Learning and Transferring Sparse Contextual Bigrams with Linear Transformers
- URL: http://arxiv.org/abs/2410.23438v1
- Date: Wed, 30 Oct 2024 20:29:10 GMT
- Title: Learning and Transferring Sparse Contextual Bigrams with Linear Transformers
- Authors: Yunwei Ren, Zixuan Wang, Jason D. Lee,
- Abstract summary: We introduce the Sparse Con Bigram model, where the next token's generation depends on a sparse set of earlier positions determined by the last token.
We analyze the training dynamics and sample complexity of learning SCB using a one-layer linear transformer with a gradient-based algorithm.
We prove that, provided a nontrivial correlation between the downstream and pretraining tasks, finetuning from a pretrained model allows us to bypass the initial sample-intensive stage.
- Score: 47.37256334633102
- License:
- Abstract: Transformers have excelled in natural language modeling and one reason behind this success is their exceptional ability to combine contextual informal and global knowledge. However, the theoretical basis remains unclear. In this paper, first we introduce the Sparse Contextual Bigram (SCB), a natural extension of the classical bigram model, where the next token's generation depends on a sparse set of earlier positions determined by the last token. We then analyze the training dynamics and sample complexity of learning SCB using a one-layer linear transformer with a gradient-based algorithm. We show that when trained from scratch, the training process can be split into an initial sample-intensive stage where the correlation is boosted from zero to a nontrivial value, followed by a more sample-efficient stage of further improvement. Additionally, we prove that, provided a nontrivial correlation between the downstream and pretraining tasks, finetuning from a pretrained model allows us to bypass the initial sample-intensive stage. We also empirically demonstrate that our algorithm can outperform SGD in this setting and discuss its relationship with the usual softmax-based transformers.
Related papers
- Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - Non-asymptotic Convergence of Training Transformers for Next-token Prediction [48.9399496805422]
Transformers have achieved extraordinary success in modern machine learning due to their excellent ability to handle sequential data.
This paper provides a fine-grained non-asymptotic analysis of the training dynamics of a one-layer transformer.
We show that the trained transformer presents non-token prediction ability with dataset shift.
arXiv Detail & Related papers (2024-09-25T20:22:06Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability [34.43255978863601]
Several suggest that transformers learn a mesa-optimizer during autorere training.
We show that a stronger assumption related to the moments of data is the sufficient necessary condition that the learned mesa-optimizer can perform.
arXiv Detail & Related papers (2024-05-27T05:41:06Z) - Transformer as Linear Expansion of Learngene [38.16612771203953]
Linear Expansion of learnGene (TLEG) is a novel approach for flexibly producing and initializing Transformers of diverse depths.
Experiments on ImageNet-1K demonstrate that TLEG achieves comparable or better performance in contrast to many individual models trained from scratch.
arXiv Detail & Related papers (2023-12-09T17:01:18Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
This work first provides a comprehensive statistical theory for transformers to perform ICL.
We show that transformers can implement a broad class of standard machine learning algorithms in context.
A emphsingle transformer can adaptively select different base ICL algorithms.
arXiv Detail & Related papers (2023-06-07T17:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.