Enhancing non-classical correlations for light scattered by an ensemble of cold two-level atoms
- URL: http://arxiv.org/abs/2410.23441v1
- Date: Wed, 30 Oct 2024 20:33:26 GMT
- Title: Enhancing non-classical correlations for light scattered by an ensemble of cold two-level atoms
- Authors: Lucas S. Marinho, Michelle O. Araújo, Wellington Martins, Daniel Felinto,
- Abstract summary: We report the enhancement of quantum correlations for biphotons generated via spontaneous four-wave mixing in an ensemble of cold two-level atoms.
This enhancement is based on the filtering of the Rayleigh linear component of the spectrum of the two emitted photons.
- Score: 0.11249583407496219
- License:
- Abstract: We report the enhancement of quantum correlations for biphotons generated via spontaneous four-wave mixing in an ensemble of cold two-level atoms. This enhancement is based on the filtering of the Rayleigh linear component of the spectrum of the two emitted photons, favoring the quantum-correlated sidebands reaching the detectors. We provide direct measurements of the unfiltered spectrum presenting its usual triplet structure, with Rayleigh central components accompanied by two peaks symmetrically located at the detuning of the excitation laser with respect to the atomic resonance. The filtering of the central component results in a violation of the Cauchy-Schwarz inequality to $4.8 \pm 1.0 \leq 1$ for a detuning of 60 times the atomic linewidth, representing an enhancement by a factor of four compared with the unfiltered quantum correlations observed at the same conditions.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Two-photon pulse scattering spectroscopy for arrays of two-level atoms,
coupled to the waveguide [125.99533416395765]
We have theoretically studied the scattering of two-photon pulses from a spatially-separated array of two-level atoms coupled to a waveguide.
The contributions of various single-eigenstate and double-excited eigenstates of the array have been analyzed.
arXiv Detail & Related papers (2023-02-27T22:05:07Z) - Two-photon emission in detuned resonance fluorescence [0.0]
We discuss two-photon correlations from the side peaks that are formed when a two-level system emitter is driven coherently.
We show that their combination leads to a neat picture compatible with perturbative two-photon scattering.
This should help to control, enhance and open new regimes of multiphoton emission.
arXiv Detail & Related papers (2022-10-07T17:59:38Z) - Observation of nonclassical correlations in biphotons generated from an
ensemble of pure two-level atoms [0.0]
We report the experimental verification of nonclassical correlations for a four-wave-mixing process in an ensemble of cold two-level atoms.
Quantum correlations are observed in a nano-seconds timescale, in the interference between the central exciting frequency and sidebands dislocated by the detuning to the atomic resonance.
arXiv Detail & Related papers (2021-08-11T18:51:02Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Coherence of resonant light-matter interaction in the strong-coupling
limit [0.0]
We derive analytical expressions for the spectrum and the intensity correlation function for photons scattered by the two-state atom coupled to the coherently driven cavity mode.
We increase the driving field amplitude and approach the critical point organizing a second-order dissipative quantum phase transition.
arXiv Detail & Related papers (2021-05-27T13:17:28Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Second-order coherence of fluorescence in multi-photon blockade [0.0]
We employ a minimal four-level model comprising the driven two-photon transition alongside two intermediate states visited in the dissipative cascaded process.
The spectrum and intensity correlation of atomic emission explicitly reflect the particulars of the cascaded model.
arXiv Detail & Related papers (2020-09-28T15:09:05Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - High-resolution spectroscopy of a quantum dot driven bichromatically by
two strong coherent fields [0.0]
We present experiments and theory of a quantum dot driven bichromatically by two strong coherent lasers.
In particular, we explore the regime where the drive strengths are substantial enough to merit a general non-perturbative analysis.
We show high resolution spectroscopy measurements with a variety of laser detunings performed on a single InGaAs quantum dot.
arXiv Detail & Related papers (2020-06-29T02:13:15Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.