Risk Sources and Risk Management Measures in Support of Standards for General-Purpose AI Systems
- URL: http://arxiv.org/abs/2410.23472v1
- Date: Wed, 30 Oct 2024 21:32:56 GMT
- Title: Risk Sources and Risk Management Measures in Support of Standards for General-Purpose AI Systems
- Authors: Rokas Gipiškis, Ayrton San Joaquin, Ze Shen Chin, Adrian Regenfuß, Ariel Gil, Koen Holtman,
- Abstract summary: We compile an extensive catalog of risk sources and risk management measures for general-purpose AI systems.
This work involves identifying technical, operational, and societal risks across model development, training, and deployment stages.
The catalog is released under a public domain license for ease of direct use by stakeholders in AI governance and standards.
- Score: 2.3266896180922187
- License:
- Abstract: There is an urgent need to identify both short and long-term risks from newly emerging types of Artificial Intelligence (AI), as well as available risk management measures. In response, and to support global efforts in regulating AI and writing safety standards, we compile an extensive catalog of risk sources and risk management measures for general-purpose AI (GPAI) systems, complete with descriptions and supporting examples where relevant. This work involves identifying technical, operational, and societal risks across model development, training, and deployment stages, as well as surveying established and experimental methods for managing these risks. To the best of our knowledge, this paper is the first of its kind to provide extensive documentation of both GPAI risk sources and risk management measures that are descriptive, self-contained and neutral with respect to any existing regulatory framework. This work intends to help AI providers, standards experts, researchers, policymakers, and regulators in identifying and mitigating systemic risks from GPAI systems. For this reason, the catalog is released under a public domain license for ease of direct use by stakeholders in AI governance and standards.
Related papers
- EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - AI Risk Categorization Decoded (AIR 2024): From Government Regulations to Corporate Policies [88.32153122712478]
We identify 314 unique risk categories organized into a four-tiered taxonomy.
At the highest level, this taxonomy encompasses System & Operational Risks, Content Safety Risks, Societal Risks, and Legal & Rights Risks.
We aim to advance AI safety through information sharing across sectors and the promotion of best practices in risk mitigation for generative AI models and systems.
arXiv Detail & Related papers (2024-06-25T18:13:05Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Applications of Generative AI (Gen AI) are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about the potential risks of the technology, and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source generative AI.
arXiv Detail & Related papers (2024-05-14T13:37:36Z) - AI and the Iterable Epistopics of Risk [1.26404863283601]
The risks AI presents to society are broadly understood to be manageable through general calculus.
This paper elaborates how risk is apprehended and managed by a regulator, developer and cyber-security expert.
arXiv Detail & Related papers (2024-04-29T13:33:22Z) - Affirmative safety: An approach to risk management for high-risk AI [6.133009503054252]
We argue that entities developing or deploying high-risk AI systems should be required to present evidence of affirmative safety.
We propose a risk management approach for advanced AI in which model developers must provide evidence that their activities keep certain risks below regulator-set thresholds.
arXiv Detail & Related papers (2024-04-14T20:48:55Z) - GUARD-D-LLM: An LLM-Based Risk Assessment Engine for the Downstream uses of LLMs [0.0]
This paper explores risks emanating from downstream uses of large language models (LLMs)
We introduce a novel LLM-based risk assessment engine (GUARD-D-LLM) designed to pinpoint and rank threats relevant to specific use cases derived from text-based user inputs.
Integrating thirty intelligent agents, this innovative approach identifies bespoke risks, gauges their severity, offers targeted suggestions for mitigation, and facilitates risk-aware development.
arXiv Detail & Related papers (2024-04-02T05:25:17Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - RiskQ: Risk-sensitive Multi-Agent Reinforcement Learning Value Factorization [49.26510528455664]
We introduce the Risk-sensitive Individual-Global-Max (RIGM) principle as a generalization of the Individual-Global-Max (IGM) and Distributional IGM (DIGM) principles.
We show that RiskQ can obtain promising performance through extensive experiments.
arXiv Detail & Related papers (2023-11-03T07:18:36Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [9.262092738841979]
AI-based systems are increasingly being leveraged to provide value to organizations, individuals, and society.
Risks have led to proposed regulations, litigation, and general societal concerns.
This paper explores the concept of a quantitative AI Risk Assessment.
arXiv Detail & Related papers (2022-09-13T21:47:25Z) - Actionable Guidance for High-Consequence AI Risk Management: Towards
Standards Addressing AI Catastrophic Risks [12.927021288925099]
Artificial intelligence (AI) systems can present risks of events with very high or catastrophic consequences at societal scale.
NIST is developing the NIST Artificial Intelligence Risk Management Framework (AI RMF) as voluntary guidance on AI risk assessment and management.
We provide detailed actionable-guidance recommendations focused on identifying and managing risks of events with very high or catastrophic consequences.
arXiv Detail & Related papers (2022-06-17T18:40:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.