EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents
- URL: http://arxiv.org/abs/2408.04449v3
- Date: Tue, 15 Oct 2024 07:45:31 GMT
- Title: EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents
- Authors: Zihao Zhu, Bingzhe Wu, Zhengyou Zhang, Lei Han, Baoyuan Wu,
- Abstract summary: Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios.
- Score: 47.69642609574771
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction. The emergence of foundation models as the "brain" of EAI agents for high-level task planning has shown promising results. However, the deployment of these agents in physical environments presents significant safety challenges. For instance, a housekeeping robot lacking sufficient risk awareness might place a metal container in a microwave, potentially causing a fire. To address these critical safety concerns, comprehensive pre-deployment risk assessments are imperative. This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios. EAIRiskBench employs a multi-agent cooperative system that leverages various foundation models to generate safety guidelines, create risk-prone scenarios, make task planning, and evaluate safety systematically. Utilizing this framework, we construct EAIRiskDataset, comprising diverse test cases across various domains, encompassing both textual and visual scenarios. Our comprehensive evaluation of state-of-the-art foundation models reveals alarming results: all models exhibit high task risk rates (TRR), with an average of 95.75% across all evaluated models. To address these challenges, we further propose two prompting-based risk mitigation strategies. While these strategies demonstrate some efficacy in reducing TRR, the improvements are limited, still indicating substantial safety concerns. This study provides the first large-scale assessment of physical risk awareness in EAI agents. Our findings underscore the critical need for enhanced safety measures in EAI systems and provide valuable insights for future research directions in developing safer embodied artificial intelligence system.
Related papers
- A Formal Framework for Assessing and Mitigating Emergent Security Risks in Generative AI Models: Bridging Theory and Dynamic Risk Mitigation [0.3413711585591077]
As generative AI systems, including large language models (LLMs) and diffusion models, advance rapidly, their growing adoption has led to new and complex security risks.
This paper introduces a novel formal framework for categorizing and mitigating these emergent security risks.
We identify previously under-explored risks, including latent space exploitation, multi-modal cross-attack vectors, and feedback-loop-induced model degradation.
arXiv Detail & Related papers (2024-10-15T02:51:32Z) - Safeguarding AI Agents: Developing and Analyzing Safety Architectures [0.0]
This paper addresses the need for safety measures in AI systems that collaborate with human teams.
We propose and evaluate three frameworks to enhance safety protocols in AI agent systems.
We conclude that these frameworks can significantly strengthen the safety and security of AI agent systems.
arXiv Detail & Related papers (2024-09-03T10:14:51Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
We propose an empirical foundation for developing more meaningful safety metrics and define AI safety in a machine learning research context.
We aim to provide a more rigorous framework for AI safety research, advancing the science of safety evaluations and clarifying the path towards measurable progress.
arXiv Detail & Related papers (2024-07-31T17:59:24Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
We propose a risk assessment process using tools like the risk rating methodology which is used for traditional systems.
We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors.
We also map threats against three key stakeholder groups.
arXiv Detail & Related papers (2024-03-20T05:17:22Z) - Asset-centric Threat Modeling for AI-based Systems [7.696807063718328]
This paper presents ThreatFinderAI, an approach and tool to model AI-related assets, threats, countermeasures, and quantify residual risks.
To evaluate the practicality of the approach, participants were tasked to recreate a threat model developed by cybersecurity experts of an AI-based healthcare platform.
Overall, the solution's usability was well-perceived and effectively supports threat identification and risk discussion.
arXiv Detail & Related papers (2024-03-11T08:40:01Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT, Automated Safety Scenario Red Teaming, consists of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection.
We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance.
We find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings.
arXiv Detail & Related papers (2023-10-14T17:10:28Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
This survey presents a framework for safety research pertaining to large models.
We begin by introducing safety issues of wide concern, then delve into safety evaluation methods for large models.
We explore the strategies for enhancing large model safety from training to deployment.
arXiv Detail & Related papers (2023-02-18T09:32:55Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [9.262092738841979]
AI-based systems are increasingly being leveraged to provide value to organizations, individuals, and society.
Risks have led to proposed regulations, litigation, and general societal concerns.
This paper explores the concept of a quantitative AI Risk Assessment.
arXiv Detail & Related papers (2022-09-13T21:47:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.