論文の概要: Generative forecasting of brain activity enhances Alzheimer's classification and interpretation
- arxiv url: http://arxiv.org/abs/2410.23515v1
- Date: Wed, 30 Oct 2024 23:51:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:59:53.687476
- Title: Generative forecasting of brain activity enhances Alzheimer's classification and interpretation
- Title(参考訳): 脳活動の発生予測はアルツハイマーの分類と解釈を促進する
- Authors: Yutong Gao, Vince D. Calhoun, Robyn L. Miller,
- Abstract要約: 静止状態機能型磁気共鳴イメージング(rs-fMRI)は、神経活動を監視する非侵襲的な方法を提供する。
深層学習はこれらの表現を捉えることを約束している。
本研究では,データ拡張の一形態として,rs-fMRIから派生した独立成分ネットワークの時系列予測に着目した。
- 参考スコア(独自算出の注目度): 16.09844316281377
- License:
- Abstract: Understanding the relationship between cognition and intrinsic brain activity through purely data-driven approaches remains a significant challenge in neuroscience. Resting-state functional magnetic resonance imaging (rs-fMRI) offers a non-invasive method to monitor regional neural activity, providing a rich and complex spatiotemporal data structure. Deep learning has shown promise in capturing these intricate representations. However, the limited availability of large datasets, especially for disease-specific groups such as Alzheimer's Disease (AD), constrains the generalizability of deep learning models. In this study, we focus on multivariate time series forecasting of independent component networks derived from rs-fMRI as a form of data augmentation, using both a conventional LSTM-based model and the novel Transformer-based BrainLM model. We assess their utility in AD classification, demonstrating how generative forecasting enhances classification performance. Post-hoc interpretation of BrainLM reveals class-specific brain network sensitivities associated with AD.
- Abstract(参考訳): 純粋にデータ駆動アプローチによる認知と本質的な脳活動の関係を理解することは、神経科学において重要な課題である。
Resting-state functional magnetic resonance imaging (rs-fMRI)は、局所神経活動を監視する非侵襲的な方法を提供し、リッチで複雑な時空間データ構造を提供する。
深層学習は、これらの複雑な表現を捉えることを約束している。
しかし、特にアルツハイマー病(AD)のような疾患特異的なグループでは、大規模なデータセットの可用性が制限されているため、ディープラーニングモデルの一般化が制限される。
本研究では、従来のLSTMモデルとトランスフォーマーベースのBrainLMモデルの両方を用いて、RS-fMRIから派生した独立成分ネットワークの多変量時系列予測に着目する。
AD分類におけるそれらの有用性を評価し、生成予測が分類性能をいかに向上させるかを示す。
BrainLMのポストホックな解釈は、ADに関連するクラス固有の脳ネットワーク感受性を明らかにする。
関連論文リスト
- Study of Brain Network in Alzheimers Disease Using Wavelet-Based Graph Theory Method [0.0]
アルツハイマー病(英語: Alzheimer's disease、AD)は、記憶喪失と認知低下を特徴とする神経変性疾患である。
ピアソンの相関のような伝統的な手法は相関行列を計算するために使われてきた。
本稿では、離散ウェーブレット変換(DWT)とグラフ理論を統合し、脳ネットワークの動的挙動をモデル化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-06T07:26:14Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Self-supervised multimodal neuroimaging yields predictive
representations for a spectrum of Alzheimer's phenotypes [27.331511924585023]
この研究は、マルチモーダル・ニューロイメージングデータから複数の表現を学習するための、新しいマルチスケール協調フレームワークを提案する。
本稿では,情報誘導バイアスの一般的な分類法を提案する。
自己教師型モデルでは,事前トレーニング中にラベルにアクセスすることなく,障害関連脳領域とマルチモーダルリンクを明らかにする。
論文 参考訳(メタデータ) (2022-09-07T01:37:19Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
脳MRIにおける構造-機能変換を初めて学習することにより,潜在的な解決策を提案する。
次に,大規模構造スキャンから空間整合機能画像を合成する。
時間的ローブは最も予測可能な構造領域であり、パリエト後頭ローブはモデルで最も予測可能な機能領域である。
論文 参考訳(メタデータ) (2021-04-10T03:16:33Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。