論文の概要: Deterministic and reconfigurable graph state generation with a single solid-state quantum emitter
- arxiv url: http://arxiv.org/abs/2410.23518v1
- Date: Wed, 30 Oct 2024 23:59:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:01:28.375984
- Title: Deterministic and reconfigurable graph state generation with a single solid-state quantum emitter
- Title(参考訳): 単一固体量子エミッタを用いた決定論的および再構成可能なグラフ状態生成
- Authors: H. Huet, P. R. Ramesh, S. C. Wein, N. Coste, P. Hilaire, N. Somaschi, M. Morassi, A. Lemaître, I. Sagnes, M. F. Doty, O. Krebs, L. Lanco, D. A. Fioretto, P. Senellart,
- Abstract要約: 我々は,光固体集積量子エミッタを用いた決定論的および再構成可能なグラフ状態生成を示す。
2つの連続する光子の量子状態トモグラフィーを行い、ベル状態の忠実度を0.80$pm$0.04まで測定し、コンカレンスを0.69$pm$0.09まで測定する。
この単純な光学スキームは、市販の量子ドットベースの単一光子源と互換性があり、スピンと光子によるフォールトトレラント量子コンピューティングに一歩近づいた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Measurement-based quantum computing offers a promising route towards scalable, universal photonic quantum computation. This approach relies on the deterministic and efficient generation of photonic graph states in which many photons are mutually entangled with various topologies. Recently, deterministic sources of graph states have been demonstrated with quantum emitters in both the optical and microwave domains. In this work, we demonstrate deterministic and reconfigurable graph state generation with optical solid-state integrated quantum emitters. Specifically, we use a single semiconductor quantum dot in a cavity to generate caterpillar graph states, the most general type of graph state that can be produced with a single emitter. By using fast detuned optical pulses, we achieve full control over the spin state, enabling us to vary the entanglement topology at will. We perform quantum state tomography of two successive photons, measuring Bell state fidelities up to 0.80$\pm$0.04 and concurrences up to 0.69$\pm$0.09, while maintaining high photon indistinguishability. This simple optical scheme, compatible with commercially available quantum dot-based single photon sources, brings us a step closer to fault-tolerant quantum computing with spins and photons.
- Abstract(参考訳): 測定ベースの量子コンピューティングは、スケーラブルで普遍的なフォトニック量子計算への有望な経路を提供する。
このアプローチは、多くの光子が様々な位相に相互に絡み合っているような、決定論的かつ効率的なフォトニックグラフ状態の生成に依存している。
近年,光領域とマイクロ波領域の両方で量子エミッタを用いてグラフ状態の決定論的情報源が実証されている。
本研究では,光固体集積量子エミッタを用いた決定論的および再構成可能なグラフ状態生成について述べる。
具体的には、キャビティ内で単一の半導体量子ドットを使用して、単一エミッタで生成できる最も一般的なグラフ状態である毛細管グラフ状態を生成する。
高速な偏向光パルスを用いることでスピン状態を完全に制御し、絡み合い位相を自由に変化させることができる。
我々は、2つの連続する光子の量子状態トモグラフィーを行い、ベル状態の忠実度を0.80$\pm$0.04まで測定し、高い光子不連続性を保ちながら0.69$\pm$0.09まで収束する。
この単純な光学スキームは、市販の量子ドットベースの単一光子源と互換性があり、スピンと光子によるフォールトトレラント量子コンピューティングに一歩近づいた。
関連論文リスト
- Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
量子エミッタ(超伝導量子ビット)をコヒーレントドライブで連続的にエキサイティングすることで, 絡み合ったフォトニックモードを実験的に生成する。
共鳴蛍光スペクトルの2つの側バンドから抽出したモード間の絡み合いが生じることを示す。
本手法は, 様々な物理プラットフォームにおいて, 絡み合いを高速に分散するために有効である。
論文 参考訳(メタデータ) (2024-07-10T18:48:41Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
長距離における量子状態の絡み合いは、量子コンピューティング、量子通信、および量子センシングを増強することができる。
過去20年間で、高忠実度、高効率、長期保存、有望な多重化機能を備えた量子光学記憶が開発された。
論文 参考訳(メタデータ) (2023-04-19T03:18:51Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
単一光子ソースは、衛星ベースの量子キー分散シナリオにおけるセキュアなデータレートを向上させることができる。
ペイロードは3U CubeSatに統合され、2024年に低軌道への打ち上げが予定されている。
論文 参考訳(メタデータ) (2023-01-26T15:34:11Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
ニオブ酸リチウム薄膜で作製したフォトニック集積回路について述べる。
我々は2階非線形性を用いてポンプ光と同じ周波数で圧縮状態を生成し、回路制御と電気光学によるセンシングを実現する。
このようなチップ上のフォトニクスシステムは、低消費電力で動作し、必要なすべての機能を1つのダイに統合することで、量子光学センサーの新たな機会が開けることを期待している。
論文 参考訳(メタデータ) (2022-12-19T18:46:33Z) - A compiler for universal photonic quantum computers [0.0]
一方向コンピューティングでは、入力状態は初期積状態ではなく、いわゆるクラスタ状態である。
我々はQASM回路を測定グラフ(m-graph)と呼ばれるグラフ表現に変換するパイプラインを提案する。
実験的な離散可変フォトニックプラットフォーム上での実行を評価する前に、ZX-Calculusを用いてグラフを最適化する。
論文 参考訳(メタデータ) (2022-10-17T16:47:45Z) - Near-deterministic hybrid generation of arbitrary photonic graph states
using a single quantum emitter and linear optics [0.0]
我々は、現在の量子エミッタ機能を用いて、グラフ状態を生成するためのほぼ決定論的解を導入する。
本研究は,資源効率の高い量子情報処理の実用化に向けての道を開くものである。
論文 参考訳(メタデータ) (2022-05-19T17:59:59Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
単一光子は量子科学と技術の主要なプラットフォームを構成する。
量子フォトニクスの主な課題は、どのように高度な絡み合った資源状態と効率的な光物質界面を生成するかである。
我々は、単一光子波束間の量子非線形相互作用を実現するために、単一量子エミッタとナノフォトニック導波路との効率的でコヒーレントな結合を利用する。
論文 参考訳(メタデータ) (2021-12-13T17:33:30Z) - Nonlinear down-conversion in a single quantum dot [0.0]
フォトニック量子技術は、商用化が近づいている。
1つの重要なビルディングブロックはナノスケールの積分可能な量子光源である。
単一光子放出特性を調整・制御するためのエミッタ非依存手法を示す。
論文 参考訳(メタデータ) (2021-05-26T08:31:16Z) - A bright and fast source of coherent single photons [46.25143811066789]
単一光子源はデバイス非依存の量子通信において重要な技術である。
特に高効率な単一光子源について報告する。
論文 参考訳(メタデータ) (2020-07-24T17:08:46Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
集積フォトニクスは量子情報処理のための堅牢なプラットフォームである。
非常に区別がつかず純粋な単一の光子の源は、ほぼ決定的か高い効率で隠蔽されている。
ここでは、これらの要件を同時に満たすオンチップ光子源を実証する。
論文 参考訳(メタデータ) (2020-05-19T16:46:44Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
本研究では、導波路に直接結合する超伝導トランスモン量子ビットを用いて、そのような光子の決定論的生成を示す。
我々は2光子N00N状態を生成し、放出された光子の状態と空間的絡み合いが量子ビット周波数で調節可能であることを示す。
論文 参考訳(メタデータ) (2020-03-16T16:03:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。