QUEST-A: Untrained Filtering with Trained Focusing led to Enhanced Quantum Architectures
- URL: http://arxiv.org/abs/2410.23560v1
- Date: Thu, 31 Oct 2024 01:57:14 GMT
- Title: QUEST-A: Untrained Filtering with Trained Focusing led to Enhanced Quantum Architectures
- Authors: Lian-Hui Yu, Xiao-Yu Li, Geng Chen, Qin-Sheng Zhu, Hui Li, Guo-Wu Yang,
- Abstract summary: Quantum architecture search (QAS) represents a fundamental challenge in quantum machine learning.
This work decomposes QAS into two alternately solved subproblems: optimal circuit structure retrieval and parameter optimization.
We propose Quantum Untrained-Explored Synergistic Trained Architecture (QUEST-A), which implements rapid architecture pruning through inherent circuit properties.
- Score: 14.288836269941207
- License:
- Abstract: Quantum architecture search (QAS) represents a fundamental challenge in quantum machine learning, with SOTA methods primarily categorized into training-free and gradient-guided approaches. However, treating QAS solely as either a discrete pruning process or a continuous optimization problem fails to balance accuracy and efficiency. This work decomposes QAS into two alternately solved subproblems: optimal circuit structure retrieval and parameter optimization. Based on this insight, we propose Quantum Untrained-Explored Synergistic Trained Architecture (QUEST-A), which implements rapid architecture pruning through inherent circuit properties and develops focused optimization with parameter reuse strategies. QUEST-A unifies discrete structure search and continuous parameter optimization within an evolutionary framework that integrates rapid pruning and fine-grained optimization. Experiments demonstrate QUEST-A's superiority over existing methods: enhancing model expressivity in signal representation, maintaining high performance across varying complexities in image classification, and achieving order-of-magnitude precision improvements in variational quantum eigensolver tasks. These results validate QUEST-A's effectiveness and provide transferable methodologies for QAS.
Related papers
- Trainability maximization using estimation of distribution algorithms assisted by surrogate modelling for quantum architecture search [8.226785409557598]
Quantum architecture search (QAS) involves optimizing both the quantum parametric circuit configuration but also its parameters for a variational quantum algorithm.
In this paper, we aim to achieve two improvements in QAS: (1) to reduce the number of measurements by an online surrogate model of the evaluation process that aggressively discards architectures of poor performance; (2) to avoid training the circuits when BPs are present.
We experimentally validate our proposal for the variational quantum eigensolver and showcase that our algorithm is able to find solutions that have been previously proposed in the literature for the Hamiltonians; but also to outperform the state of the
arXiv Detail & Related papers (2024-07-29T15:22:39Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
This work introduces a curriculum-based reinforcement learning QAS (CRLQAS) designed to tackle challenges in VQA deployment.
The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently.
To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in noisy quantum circuits.
arXiv Detail & Related papers (2024-02-05T20:33:00Z) - Quantum Architecture Search with Unsupervised Representation Learning [24.698519892763283]
Unsupervised representation learning presents new opportunities for advancing Quantum Architecture Search (QAS)
QAS is designed to optimize quantum circuits for Variational Quantum Algorithms (VQAs)
arXiv Detail & Related papers (2024-01-21T19:53:17Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
Differentiable ARchiTecture Search (DARTS) has recently become the mainstream of neural architecture search (NAS)
We tackle the hypergradient computation in DARTS based on the implicit function theorem.
We show that the architecture optimisation with the proposed method, named iDARTS, is expected to converge to a stationary point.
arXiv Detail & Related papers (2021-06-21T00:44:11Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
We study the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem.
Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology.
We find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions.
arXiv Detail & Related papers (2021-03-26T14:06:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.