論文の概要: EMGBench: Benchmarking Out-of-Distribution Generalization and Adaptation for Electromyography
- arxiv url: http://arxiv.org/abs/2410.23625v1
- Date: Thu, 31 Oct 2024 04:24:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:01:09.917695
- Title: EMGBench: Benchmarking Out-of-Distribution Generalization and Adaptation for Electromyography
- Title(参考訳): EMGBench: 筋電図におけるアウト・オブ・ディストリビューションの一般化と適応のベンチマーク
- Authors: Jehan Yang, Maxwell Soh, Vivianna Lieu, Douglas J Weber, Zackory Erickson,
- Abstract要約: 本稿では,EMG分類アルゴリズムの分布外性能を評価するため,機械学習を用いた最初の一般化と適応ベンチマークを提案する。
ユーザの意図したジェスチャーをEMG信号で予測することにより、補助技術を制御するウェアラブルソリューションを作成することができる。
- 参考スコア(独自算出の注目度): 3.5217105746525803
- License:
- Abstract: This paper introduces the first generalization and adaptation benchmark using machine learning for evaluating out-of-distribution performance of electromyography (EMG) classification algorithms. The ability of an EMG classifier to handle inputs drawn from a different distribution than the training distribution is critical for real-world deployment as a control interface. By predicting the user's intended gesture using EMG signals, we can create a wearable solution to control assistive technologies, such as computers, prosthetics, and mobile manipulator robots. This new out-of-distribution benchmark consists of two major tasks that have utility for building robust and adaptable control interfaces: 1) intersubject classification and 2) adaptation using train-test splits for time-series. This benchmark spans nine datasets--the largest collection of EMG datasets in a benchmark. Among these, a new dataset is introduced, featuring a novel, easy-to-wear high-density EMG wearable for data collection. The lack of open-source benchmarks has made comparing accuracy results between papers challenging for the EMG research community. This new benchmark provides researchers with a valuable resource for analyzing practical measures of out-of-distribution performance for EMG datasets. Our code and data from our new dataset can be found at emgbench.github.io.
- Abstract(参考訳): 本稿では,EMG分類アルゴリズムの分布外性能を評価するため,機械学習を用いた最初の一般化と適応ベンチマークを提案する。
EMG分類器がトレーニングディストリビューションとは異なる分布から引き出された入力を処理できることは、実世界の運用においてコントロールインターフェースとして重要である。
ユーザの意図したジェスチャーをEMG信号を用いて予測することにより,コンピュータ,義肢,移動マニピュレータロボットなどの補助技術を制御するウェアラブルソリューションを作成することができる。
この新しいアウト・オブ・ディストリビューションベンチマークは、堅牢で適応可能なコントロールインターフェイスを構築するためのユーティリティを持つ2つの主要なタスクで構成されている。
1) 物体間分類と
2) 時系列の列車試験分割による適応
このベンチマークは、ベンチマークで最大のEMGデータセットのコレクションである9つのデータセットにまたがる。
これらのうち、新しいデータセットが導入され、データ収集のための新しくて使いやすい高密度EMGウェアラブルが導入された。
オープンソースベンチマークの欠如は、EMG研究コミュニティに挑戦する論文の精度を比較した結果となった。
この新しいベンチマークは、EMGデータセットのアウト・オブ・ディストリビューション性能の実測値を分析するための貴重なリソースを提供する。
私たちの新しいデータセットのコードとデータは、 Emgbench.github.ioで参照できます。
関連論文リスト
- Language-aware Multiple Datasets Detection Pretraining for DETRs [4.939595148195813]
本稿では,METR と呼ばれる DETR 型検出器の事前学習に複数のデータセットを利用するためのフレームワークを提案する。
事前訓練された言語モデルを導入することにより、オブジェクト検出の典型的なマルチクラス化をバイナリ分類に変換する。
マルチタスク・ジョイントトレーニングとプレトレイン・ファネチューン・パラダイムのいずれにおいても,METRは異常な結果が得られることを示す。
論文 参考訳(メタデータ) (2023-04-07T10:34:04Z) - Machine Learning Capability: A standardized metric using case difficulty
with applications to individualized deployment of supervised machine learning [2.2060666847121864]
モデル評価は教師付き機械学習分類解析において重要な要素である。
アイテム応答理論(IRT)と機械学習を用いたコンピュータ適応テスト(CAT)は、最終分類結果とは無関係にデータセットをベンチマークすることができる。
論文 参考訳(メタデータ) (2023-02-09T00:38:42Z) - EGG-GAE: scalable graph neural networks for tabular data imputation [8.775728170359024]
本稿では,データ計算に欠ける新しいEdGe生成グラフオートエンコーダ(EGG-GAE)を提案する。
EGG-GAEは、入力データのランダムにサンプリングされたミニバッチで動作し、各アーキテクチャ層におけるミニバッチ間の接続性を自動的に推測する。
論文 参考訳(メタデータ) (2022-10-19T10:26:17Z) - Vector-Based Data Improves Left-Right Eye-Tracking Classifier
Performance After a Covariate Distributional Shift [0.0]
我々は、より堅牢なベンチマークを作成するために、EEG-ETデータ収集のための微粒なデータアプローチを提案する。
我々は、粗粒データと細粒データの両方を利用して機械学習モデルを訓練し、類似/異なる分布パターンのデータでテストした場合の精度を比較した。
その結果、細粒度ベクトルベースでトレーニングされたモデルは、粗粒度二分分類されたデータでトレーニングされたモデルよりも分布シフトの影響を受けにくいことがわかった。
論文 参考訳(メタデータ) (2022-07-31T16:27:50Z) - AnoShift: A Distribution Shift Benchmark for Unsupervised Anomaly
Detection [7.829710051617368]
本稿では,ネットワーク侵入検知のためのトラフィックデータセットである Kyoto-2006+ 上に構築された,時間とともに変化するデータを含む教師なし異常検出ベンチマークを提案する。
まず, 基本機能解析, t-SNE, および最適輸送手法を用いて, 年々の分布距離を計測する。
従来のアプローチからディープラーニングまで,さまざまなモデルでパフォーマンス劣化を検証する。
論文 参考訳(メタデータ) (2022-06-30T17:59:22Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Open-Set Recognition: A Good Closed-Set Classifier is All You Need [146.6814176602689]
分類器が「ゼロ・オブ・ア・ア・ア・ベ」決定を行う能力は、閉集合クラスにおける精度と高い相関関係があることが示される。
この相関を利用して、閉セット精度を向上させることにより、クロスエントロピーOSR'ベースライン'の性能を向上させる。
また、セマンティックノベルティを検出するタスクをより尊重する新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2021-10-12T17:58:59Z) - Score-based Generative Modeling in Latent Space [93.8985523558869]
スコアベース生成モデル(SGM)は,最近,サンプル品質と分布範囲の両面で顕著な結果を示した。
本稿では,Latent Score-based Generative Model (LSGM)を提案する。
データから潜在空間への移動により、より表現力のある生成モデルをトレーニングし、非連続データにSGMを適用し、よりスムーズなSGMをより小さな空間で学習することができる。
論文 参考訳(メタデータ) (2021-06-10T17:26:35Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
本研究では,人口変動に対するモデルのロバスト性を評価する手法を開発した。
既存のデータセットの基盤となるクラス構造を利用して、トレーニングとテストの分散を構成するデータサブポピュレーションを制御する。
この手法をImageNetデータセットに適用し、様々な粒度のサブポピュレーションシフトベンチマークスイートを作成する。
論文 参考訳(メタデータ) (2020-08-11T17:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。