論文の概要: GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring
- arxiv url: http://arxiv.org/abs/2410.23658v1
- Date: Thu, 31 Oct 2024 06:17:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:01:54.268769
- Title: GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring
- Title(参考訳): GS-Blur:リアルなイメージを損なう3Dシーンベースのデータセット
- Authors: Dongwoo Lee, Joonkyu Park, Kyoung Mu Lee,
- Abstract要約: 本稿では,新しい手法を用いて合成されたリアルなぼやけた画像のデータセットであるGS-Blurを提案する。
まず,3Dガウス・スプレイティング(3DGS)を用いて多視点画像から3Dシーンを再構成し,ランダムに生成された運動軌跡に沿ってカメラビューを移動させてぼやけた画像を描画する。
GS-Blurの再構築に様々なカメラトラジェクトリを採用することで、我々のデータセットは現実的で多様な種類のぼかしを含み、現実世界のぼかしをうまく一般化する大規模なデータセットを提供する。
- 参考スコア(独自算出の注目度): 50.72230109855628
- License:
- Abstract: To train a deblurring network, an appropriate dataset with paired blurry and sharp images is essential. Existing datasets collect blurry images either synthetically by aggregating consecutive sharp frames or using sophisticated camera systems to capture real blur. However, these methods offer limited diversity in blur types (blur trajectories) or require extensive human effort to reconstruct large-scale datasets, failing to fully reflect real-world blur scenarios. To address this, we propose GS-Blur, a dataset of synthesized realistic blurry images created using a novel approach. To this end, we first reconstruct 3D scenes from multi-view images using 3D Gaussian Splatting (3DGS), then render blurry images by moving the camera view along the randomly generated motion trajectories. By adopting various camera trajectories in reconstructing our GS-Blur, our dataset contains realistic and diverse types of blur, offering a large-scale dataset that generalizes well to real-world blur. Using GS-Blur with various deblurring methods, we demonstrate its ability to generalize effectively compared to previous synthetic or real blur datasets, showing significant improvements in deblurring performance.
- Abstract(参考訳): 遅延ネットワークをトレーニングするには、ペア化されたぼやけた画像とシャープな画像の適切なデータセットが不可欠である。
既存のデータセットは、連続したシャープなフレームを集約したり、高度なカメラシステムを使って真のぼやけを捉えたりすることで、合成的にぼやけた画像を収集します。
しかしながら、これらの手法は、ブラータイプ(ブルートラジェクトリ)の限られた多様性を提供するか、大規模なデータセットを再構築するために広範囲な人的努力を必要とし、現実世界のブラーシナリオを完全に反映することができない。
そこで我々は,新しい手法を用いて合成されたリアルなぼやけた画像のデータセットであるGS-Blurを提案する。
この目的のために,まず3Dガウススプラッティング(3DGS)を用いて多視点画像から3Dシーンを再構成し,ランダムに生成された動き軌跡に沿ってカメラビューを移動させてぼやけた画像を描画する。
GS-Blurの再構築に様々なカメラトラジェクトリを採用することで、我々のデータセットは現実的で多様な種類のぼかしを含み、現実世界のぼかしをうまく一般化する大規模なデータセットを提供する。
GS-Blurと様々なデブロアリング手法を用いて,従来の合成データセットや実際のブラーデータセットと比較して効果的に一般化できることを示し,デブロアリング性能を著しく向上させた。
関連論文リスト
- EVER: Exact Volumetric Ellipsoid Rendering for Real-time View Synthesis [72.53316783628803]
実時間微分可能な発光専用ボリュームレンダリング法であるExact Volumetric Ellipsoid Rendering (EVER)を提案する。
3D Gaussian Splatting(3DGS)による最近の手法とは異なり、プリミティブベースの表現は正確なボリュームレンダリングを可能にする。
本手法は,3DGSよりもブレンディング問題の方が精度が高く,ビューレンダリングの追従作業も容易であることを示す。
論文 参考訳(メタデータ) (2024-10-02T17:59:09Z) - Dual-Camera Smooth Zoom on Mobile Phones [55.4114152554769]
我々は、スムーズなズームプレビューを実現するために、新しいタスク、すなわちデュアルカメラスムーズズーム(DCSZ)を導入する。
フレームモデル (FI) 技術は潜在的な解決法であるが、地軸収集に苦慮している。
連続型仮想カメラを組み込んだデータファクトリソリューションを提案し,シーンの再構成された3DモデルをレンダリングしてDCSZデータを生成する。
論文 参考訳(メタデータ) (2024-04-07T10:28:01Z) - Depth-Aware Image Compositing Model for Parallax Camera Motion Blur [4.170640862518009]
カメラの動きは、3D世界の奥行きの変化によって空間的に異なるぼやけをもたらす。
深度依存性の異なるぼかしに対して, 単純かつ高精度な画像呈示ブラ (ICB) モデルを提案する。
論文 参考訳(メタデータ) (2023-03-16T14:15:32Z) - Towards Real-World Video Deblurring by Exploring Blur Formation Process [53.91239555063343]
近年、深層学習に基づくアプローチは、ビデオデブロアリングタスクにおいて有望な成功を収めている。
既存の合成データセットで訓練されたモデルは、現実世界のぼやけたシナリオよりも一般化の問題に悩まされている。
本稿では, RAW-Blur と呼ばれる, ぼかし生成の手がかりを生かして, 現実的なぼかし合成パイプラインを提案する。
論文 参考訳(メタデータ) (2022-08-28T09:24:52Z) - Realistic Blur Synthesis for Learning Image Deblurring [20.560205377203957]
より現実的なブラーを合成できる新しいブラー合成パイプラインを提案する。
また、実際のぼやけた画像とそれに対応するシャープな画像のシーケンスを含む新しいデータセットであるRSBlurを提案する。
論文 参考訳(メタデータ) (2022-02-17T17:14:48Z) - MC-Blur: A Comprehensive Benchmark for Image Deblurring [127.6301230023318]
ほとんどの実世界の画像では、ブラーは動きやデフォーカスなど様々な要因によって引き起こされる。
我々は,MC-Blurと呼ばれる大規模マルチライク画像デブロアリングデータセットを新たに構築する。
MC-Blurデータセットに基づいて,異なるシナリオにおけるSOTA法の比較を行う。
論文 参考訳(メタデータ) (2021-12-01T02:10:42Z) - Urban Radiance Fields [77.43604458481637]
本研究では,都市屋外環境における世界地図作成によく利用されるスキャニングプラットフォームによって収集されたデータから3次元再構成と新しいビュー合成を行う。
提案手法は、制御された環境下での小さなシーンのための現実的な新しい画像の合成を実証したニューラルラジアンス場を拡張している。
これら3つのエクステンションはそれぞれ、ストリートビューデータの実験において、大幅なパフォーマンス改善を提供する。
論文 参考訳(メタデータ) (2021-11-29T15:58:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。