Local Superior Soups: A Catalyst for Model Merging in Cross-Silo Federated Learning
- URL: http://arxiv.org/abs/2410.23660v1
- Date: Thu, 31 Oct 2024 06:20:17 GMT
- Title: Local Superior Soups: A Catalyst for Model Merging in Cross-Silo Federated Learning
- Authors: Minghui Chen, Meirui Jiang, Xin Zhang, Qi Dou, Zehua Wang, Xiaoxiao Li,
- Abstract summary: We propose an innovative model-based local training technique called Local Superior Soups''
Our method enhances local training across different clients, encouraging the exploration of a connected low-loss basin.
We demonstrated its effectiveness and efficiency across diverse widely-used FL datasets.
- Score: 33.88701368538447
- License:
- Abstract: Federated learning (FL) is a learning paradigm that enables collaborative training of models using decentralized data. Recently, the utilization of pre-trained weight initialization in FL has been demonstrated to effectively improve model performance. However, the evolving complexity of current pre-trained models, characterized by a substantial increase in parameters, markedly intensifies the challenges associated with communication rounds required for their adaptation to FL. To address these communication cost issues and increase the performance of pre-trained model adaptation in FL, we propose an innovative model interpolation-based local training technique called ``Local Superior Soups.'' Our method enhances local training across different clients, encouraging the exploration of a connected low-loss basin within a few communication rounds through regularized model interpolation. This approach acts as a catalyst for the seamless adaptation of pre-trained models in in FL. We demonstrated its effectiveness and efficiency across diverse widely-used FL datasets. Our code is available at \href{https://github.com/ubc-tea/Local-Superior-Soups}{https://github.com/ubc-tea/Local-Superior-Soups}.
Related papers
- A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers.
Recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts.
We propose a novel federated model soup method to optimize the trade-off between local and global performance.
arXiv Detail & Related papers (2023-07-20T00:07:29Z) - Guiding The Last Layer in Federated Learning with Pre-Trained Models [18.382057374270143]
Federated Learning (FL) is an emerging paradigm that allows a model to be trained across a number of participants without sharing data.
We show that fitting a classification head using the Nearest Class Means (NCM) can be done exactly and orders of magnitude more efficiently than existing proposals.
arXiv Detail & Related papers (2023-06-06T18:02:02Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
Almost all existing systems have to face large communication burdens if the central FL server fails.
It personalizes the "right" in the deep models by alternately updating the shared and personal parameters.
To further promote the shared parameters aggregation process, we propose DFed integrating the local Sharpness Miniization.
arXiv Detail & Related papers (2023-05-24T13:52:18Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - FedTune: A Deep Dive into Efficient Federated Fine-Tuning with
Pre-trained Transformers [16.465900409973656]
Federated Learning (FL) is an emerging paradigm that enables distributed users to collaboratively and iteratively train machine learning models without sharing their private data.
Researchers are turning to using pre-trained Transformers instead of traditional convolutional neural networks in FL to leverage their excellent transfer learning capabilities.
We show that fine-tuned Transformers achieve extraordinary performance on FL, and that the lightweight fine-tuning method facilitates a fast convergence rate and low communication costs.
arXiv Detail & Related papers (2022-11-15T10:16:13Z) - Conquering the Communication Constraints to Enable Large Pre-Trained Models in Federated Learning [18.12162136918301]
Federated learning (FL) has emerged as a promising paradigm for enabling the collaborative training of models without centralized access to the raw data on local devices.
Recent state-of-the-art pre-trained models are getting more capable but also have more parameters.
Can we find a solution to enable those strong and readily-available pre-trained models in FL to achieve excellent performance while simultaneously reducing the communication burden?
Specifically, we systemically evaluate the performance of FedPEFT across a variety of client stability, data distribution, and differential privacy settings.
arXiv Detail & Related papers (2022-10-04T16:08:54Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - Continual Local Training for Better Initialization of Federated Models [14.289213162030816]
Federated learning (FL) refers to the learning paradigm that trains machine learning models directly in decentralized systems.
The popular FL algorithm emphFederated Averaging (FedAvg) suffers from weight divergence.
We propose the local continual training strategy to address this problem.
arXiv Detail & Related papers (2020-05-26T12:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.