論文の概要: MoTaDual: Modality-Task Dual Alignment for Enhanced Zero-shot Composed Image Retrieval
- arxiv url: http://arxiv.org/abs/2410.23736v1
- Date: Thu, 31 Oct 2024 08:49:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:00:41.933603
- Title: MoTaDual: Modality-Task Dual Alignment for Enhanced Zero-shot Composed Image Retrieval
- Title(参考訳): ゼロショット合成画像検索のためのMoTaDual: Modality-Task Dualアライメント
- Authors: Haiwen Li, Fei Su, Zhicheng Zhao,
- Abstract要約: Composed Image Retrieval (CIR) は、ターゲット画像の検索にバイモーダル(image+text)クエリを利用する、難しい視覚言語タスクである。
本稿では,両者の相違に対処するための2段階の枠組みを提案する。
MoTaDualは、トレーニング時間と計算コストを低く保ちながら、4つの広く使用されているZS-CIRベンチマークで最先端のパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 20.612534837883892
- License:
- Abstract: Composed Image Retrieval (CIR) is a challenging vision-language task, utilizing bi-modal (image+text) queries to retrieve target images. Despite the impressive performance of supervised CIR, the dependence on costly, manually-labeled triplets limits its scalability and zero-shot capability. To address this issue, zero-shot composed image retrieval (ZS-CIR) is presented along with projection-based approaches. However, such methods face two major problems, i.e., task discrepancy between pre-training (image $\leftrightarrow$ text) and inference (image+text $\rightarrow$ image), and modality discrepancy. The latter pertains to approaches based on text-only projection training due to the necessity of feature extraction from the reference image during inference. In this paper, we propose a two-stage framework to tackle both discrepancies. First, to ensure efficiency and scalability, a textual inversion network is pre-trained on large-scale caption datasets. Subsequently, we put forward Modality-Task Dual Alignment (MoTaDual) as the second stage, where large-language models (LLMs) generate triplet data for fine-tuning, and additionally, prompt learning is introduced in a multi-modal context to effectively alleviate both modality and task discrepancies. The experimental results show that our MoTaDual achieves the state-of-the-art performance across four widely used ZS-CIR benchmarks, while maintaining low training time and computational cost. The code will be released soon.
- Abstract(参考訳): Composed Image Retrieval (CIR) は、ターゲット画像の検索にバイモーダル(image+text)クエリを利用する、難しい視覚言語タスクである。
教師付きCIRの素晴らしい性能にもかかわらず、手作業でラベル付けされたトリプルへの依存はスケーラビリティとゼロショット能力を制限している。
この問題に対処するために、ゼロショット合成画像検索(ZS-CIR)とプロジェクションベースのアプローチを提案する。
しかし、そのような手法は、事前トレーニング(image $\leftrightarrow$ text)と推論(image+text $\rightarrow$ image)とモーダリティの相違という2つの大きな問題に直面している。
後者は、推論中に参照画像から特徴抽出を必要とするため、テキストのみのプロジェクショントレーニングに基づくアプローチに関するものである。
本稿では,両者の相違に対処するための2段階の枠組みを提案する。
まず、効率性とスケーラビリティを確保するために、大規模キャプションデータセット上でテキストインバージョンネットワークを事前トレーニングする。
次に,大規模言語モデル (LLM) が微調整のための三重項データを生成する第2段階としてModality-Task Dual Alignment (MoTaDual) を提唱した。
実験の結果,MoTaDualは訓練時間と計算コストを低く保ちながら,広く使用されている4つのZS-CIRベンチマークで最先端性能を実現していることがわかった。
コードはまもなくリリースされる。
関連論文リスト
- Training-free Zero-shot Composed Image Retrieval via Weighted Modality Fusion and Similarity [2.724141845301679]
合成画像検索(CIR)は、参照画像と修正テキストの組み合わせとしてクエリを定式化する。
本稿では,ZS-CIRのためのトレーニングフリーアプローチを提案する。
提案手法は単純で実装が容易であり,FashionIQおよびCIRRデータセットを用いた実験によりその有効性が検証された。
論文 参考訳(メタデータ) (2024-09-07T21:52:58Z) - VEGA: Learning Interleaved Image-Text Comprehension in Vision-Language Large Models [76.94378391979228]
我々は、Interleaved Image-Text (IITC) と呼ばれる、より要求の多い新しいタスクを導入する。
この課題は、画像とテキストの両方の過剰な要素を識別・無視し、質問に正確に答えるためにモデルに挑戦する。
このタスクを支援するために、科学コンテンツに関するIITCタスクに適した新しいVEGAデータセットを構築し、サブタスクである画像テキストアソシエーション(ITA)を考案した。
論文 参考訳(メタデータ) (2024-06-14T17:59:40Z) - Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval [92.13664084464514]
合成画像検索(CIR)の課題は,検索画像とユーザの意図を記述したテキストに基づいて画像を取得することである。
既存の手法は、CIRタスクにおける高度な大規模視覚言語(VL)モデルにおいて大きな進歩を遂げているが、それらは一般的に、モデルトレーニングのためのラベル付き三重項の欠如とリソース制限された環境への展開の困難という2つの大きな問題に悩まされている。
本稿では、VLモデルを利用して合成学習のためのラベルなし画像のみに依存する画像2Sentenceに基づく非対称ゼロショット合成画像検索(ISA)を提案する。
論文 参考訳(メタデータ) (2024-03-03T07:58:03Z) - Training-free Zero-shot Composed Image Retrieval with Local Concept Reranking [34.31345844296072]
合成画像検索は、参照画像と対応する修正テキストの合成クエリを通して、ギャラリー画像から興味のある画像を検索しようとする。
現在の構成画像検索手法の多くは、参照画像、修正テキスト、対応するターゲット画像からなるコストのかかる3重化データセットのトレーニングに対する教師付き学習アプローチに従っている。
そこで本研究では,学習不要なゼロショット合成画像検索手法を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:31:01Z) - Vision-by-Language for Training-Free Compositional Image Retrieval [78.60509831598745]
合成画像検索(CIR)は、データベース内の関連する対象画像を検索することを目的としている。
大規模視覚言語モデル(VLM)を用いた最近の研究動向
我々は、CIReVL(Vision-by-Language)による学習自由なCIRへの取り組みを提案する。
論文 参考訳(メタデータ) (2023-10-13T17:59:38Z) - Cross-Modal Retrieval Meets Inference:Improving Zero-Shot Classification
with Cross-Modal Retrieval [29.838375158101027]
CLIP(Contrastive Language-image Pre-training)は,ゼロショット分類能力に優れていた。
本稿では,(1)クロスモーダル検索と(2)モーダル信頼に基づくアンサンブルの2つの重要なステップからなる新しい推論手法であるX-MoReを提案する。
X-MoReは、追加のトレーニングを必要とせずに、さまざまなタスクセットで堅牢なパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-08-29T13:02:35Z) - Noisy-Correspondence Learning for Text-to-Image Person Re-identification [50.07634676709067]
本稿では,雑音対応においても頑健な視覚関係を学習するための新しいロバスト二重埋め込み法(RDE)を提案する。
提案手法は,3つのデータセット上での合成ノイズ対応と非合成ノイズ対応を両立させる。
論文 参考訳(メタデータ) (2023-08-19T05:34:13Z) - COTS: Collaborative Two-Stream Vision-Language Pre-Training Model for
Cross-Modal Retrieval [59.15034487974549]
画像テキスト検索のための新しいコラボレーティブな2ストリームビジョン言語事前学習モデルCOTSを提案する。
我々のCOTSは,2ストリーム方式の中で最も高い性能を達成し,推論の速度は10,800倍に向上した。
重要なことは、我々のCOTSはテキストからビデオへの検索にも適用でき、広く使われているMSR-VTTデータセットに新たな最先端技術をもたらすことである。
論文 参考訳(メタデータ) (2022-04-15T12:34:47Z) - SSCR: Iterative Language-Based Image Editing via Self-Supervised
Counterfactual Reasoning [79.30956389694184]
反復言語ベースの画像編集(IL-BIE)タスクは、段階的に画像を編集するための反復的な命令に従う。
データ不足は、命令ベースの変更前後の大規模な画像のサンプル収集が困難であるため、ILBIEにとって重要な問題である。
本稿では,データ不足を克服する対実的思考を取り入れたセルフスーパービジョンの対実的推論フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-21T01:45:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。