論文の概要: Reason-before-Retrieve: One-Stage Reflective Chain-of-Thoughts for Training-Free Zero-Shot Composed Image Retrieval
- arxiv url: http://arxiv.org/abs/2412.11077v3
- Date: Fri, 20 Dec 2024 03:42:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 13:01:21.100454
- Title: Reason-before-Retrieve: One-Stage Reflective Chain-of-Thoughts for Training-Free Zero-Shot Composed Image Retrieval
- Title(参考訳): Reason-before-Retrieve: フリーゼロショット合成画像検索のための1段階反射鎖
- Authors: Yuanmin Tang, Xiaoting Qin, Jue Zhang, Jing Yu, Gaopeng Gou, Gang Xiong, Qingwei Ling, Saravan Rajmohan, Dongmei Zhang, Qi Wu,
- Abstract要約: Composed Image Retrieval (CIR) は、参照画像によく似たターゲット画像を取得することを目的としている。
我々は、ZS-CIR(OSrCIR)の1段階反射鎖推論を提案する。
OSrCIRは、複数のタスクにわたる既存のトレーニングフリーメソッドよりも、パフォーマンスが1.80%から6.44%向上している。
- 参考スコア(独自算出の注目度): 28.018754406453937
- License:
- Abstract: Composed Image Retrieval (CIR) aims to retrieve target images that closely resemble a reference image while integrating user-specified textual modifications, thereby capturing user intent more precisely. Existing training-free zero-shot CIR (ZS-CIR) methods often employ a two-stage process: they first generate a caption for the reference image and then use Large Language Models for reasoning to obtain a target description. However, these methods suffer from missing critical visual details and limited reasoning capabilities, leading to suboptimal retrieval performance. To address these challenges, we propose a novel, training-free one-stage method, One-Stage Reflective Chain-of-Thought Reasoning for ZS-CIR (OSrCIR), which employs Multimodal Large Language Models to retain essential visual information in a single-stage reasoning process, eliminating the information loss seen in two-stage methods. Our Reflective Chain-of-Thought framework further improves interpretative accuracy by aligning manipulation intent with contextual cues from reference images. OSrCIR achieves performance gains of 1.80% to 6.44% over existing training-free methods across multiple tasks, setting new state-of-the-art results in ZS-CIR and enhancing its utility in vision-language applications. Our code will be available at https://github.com/Pter61/osrcir2024/.
- Abstract(参考訳): Composed Image Retrieval (CIR) は、ユーザ指定のテキスト修正を統合しながら、参照画像によく似たターゲット画像を取得し、ユーザの意図をより正確に捉えることを目的としている。
既存の訓練のないゼロショットCIR (ZS-CIR) 法では、2段階のプロセスを用いることが多い。
しかし、これらの手法は、限界的な視覚的詳細と限定的な推論能力の欠如に悩まされ、最適下検索性能が低下する。
これらの課題に対処するため、我々は、一段階の推論プロセスにおいて重要な視覚情報を保持し、2段階の手法で見られる情報損失を解消するために、多モードの大規模言語モデルを利用するZS-CIR(OSrCIR)のための、新しい1段階の学習不要な反射連鎖推論法を提案する。
我々のリフレクティブ・チェーン・オブ・サート・フレームワークは、参照画像からの操作意図と文脈的手がかりを一致させることにより、解釈精度をさらに向上する。
OSrCIRは、複数のタスクにまたがる既存のトレーニングフリーメソッドよりも1.80%から6.44%の性能向上を実現し、ZS-CIRにおける新しい最先端の結果を設定し、視覚言語アプリケーションにおけるその有用性を高める。
私たちのコードはhttps://github.com/Pter61/osrcir2024/で利用可能です。
関連論文リスト
- MoTaDual: Modality-Task Dual Alignment for Enhanced Zero-shot Composed Image Retrieval [20.612534837883892]
Composed Image Retrieval (CIR) は、ターゲット画像の検索にバイモーダル(image+text)クエリを利用する、難しい視覚言語タスクである。
本稿では,両者の相違に対処するための2段階の枠組みを提案する。
MoTaDualは、トレーニング時間と計算コストを低く保ちながら、4つの広く使用されているZS-CIRベンチマークで最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-10-31T08:49:05Z) - Visual Delta Generator with Large Multi-modal Models for Semi-supervised Composed Image Retrieval [50.72924579220149]
Composed Image Retrieval (CIR)は、提供されるテキスト修正に基づいて、クエリに似たイメージを取得するタスクである。
現在の技術は、基準画像、テキスト、ターゲット画像のラベル付き三重項を用いたCIRモデルの教師あり学習に依存している。
本稿では,参照とその関連対象画像を補助データとして検索する半教師付きCIR手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T21:00:22Z) - Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval [92.13664084464514]
合成画像検索(CIR)の課題は,検索画像とユーザの意図を記述したテキストに基づいて画像を取得することである。
既存の手法は、CIRタスクにおける高度な大規模視覚言語(VL)モデルにおいて大きな進歩を遂げているが、それらは一般的に、モデルトレーニングのためのラベル付き三重項の欠如とリソース制限された環境への展開の困難という2つの大きな問題に悩まされている。
本稿では、VLモデルを利用して合成学習のためのラベルなし画像のみに依存する画像2Sentenceに基づく非対称ゼロショット合成画像検索(ISA)を提案する。
論文 参考訳(メタデータ) (2024-03-03T07:58:03Z) - Modality-Aware Representation Learning for Zero-shot Sketch-based Image
Retrieval [10.568851068989973]
ゼロショット学習は、機械学習モデルが目に見えないカテゴリを扱うための効率的なソリューションを提供する。
そこで本研究では,スケッチや写真をテキストで対比して間接的にアライメントする新しいフレームワークを提案する。
データから学習したモダリティを明示的に符号化することで、モダリティ固有の情報からモダリティに依存しないセマンティクスを分離する。
論文 参考訳(メタデータ) (2024-01-10T00:39:03Z) - Symmetrical Bidirectional Knowledge Alignment for Zero-Shot Sketch-Based
Image Retrieval [69.46139774646308]
本稿ではゼロショットスケッチベース画像検索(ZS-SBIR)の問題点について検討する。
目に見えないカテゴリのスケッチをクエリとして使用して、同じカテゴリのイメージにマッチさせることが目的だ。
ゼロショットスケッチに基づく画像検索(SBKA)のための新しい対称双方向知識アライメントを提案する。
論文 参考訳(メタデータ) (2023-12-16T04:50:34Z) - Training-free Zero-shot Composed Image Retrieval with Local Concept Reranking [34.31345844296072]
合成画像検索は、参照画像と対応する修正テキストの合成クエリを通して、ギャラリー画像から興味のある画像を検索しようとする。
現在の構成画像検索手法の多くは、参照画像、修正テキスト、対応するターゲット画像からなるコストのかかる3重化データセットのトレーニングに対する教師付き学習アプローチに従っている。
そこで本研究では,学習不要なゼロショット合成画像検索手法を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:31:01Z) - Pretrain like Your Inference: Masked Tuning Improves Zero-Shot Composed
Image Retrieval [17.70430913227593]
本稿では,事前学習されたモデルと下流CIRタスクとのギャップを低減するために,未ラベルで事前学習したマスク付きチューニング手法を提案する。
このようなシンプルな設計で、きめ細かいテキスト誘導の修正を捉えることができる。
論文 参考訳(メタデータ) (2023-11-13T02:49:57Z) - Vision-by-Language for Training-Free Compositional Image Retrieval [78.60509831598745]
合成画像検索(CIR)は、データベース内の関連する対象画像を検索することを目的としている。
大規模視覚言語モデル(VLM)を用いた最近の研究動向
我々は、CIReVL(Vision-by-Language)による学習自由なCIRへの取り組みを提案する。
論文 参考訳(メタデータ) (2023-10-13T17:59:38Z) - Sentence-level Prompts Benefit Composed Image Retrieval [69.78119883060006]
合成画像検索(CIR)は、参照画像と相対キャプションの両方を含むクエリを用いて、特定の画像を検索するタスクである。
本稿では,事前訓練されたV-Lモデル,例えばBLIP-2を用いて文レベルのプロンプトを生成することを提案する。
提案手法は,Fashion-IQおよびCIRRデータセット上の最先端のCIR手法に対して良好に動作する。
論文 参考訳(メタデータ) (2023-10-09T07:31:44Z) - Two-stage Visual Cues Enhancement Network for Referring Image
Segmentation [89.49412325699537]
Referring Image (RIS)は、ある自然言語表現によって参照される画像から対象のオブジェクトをセグメント化することを目的としている。
本稿では,2段階のビジュアルキュー拡張ネットワーク(TV-Net)を考案し,この問題に対処する。
この2段階の強化により,提案するTV-Netは,自然言語表現と画像間のきめ細かいマッチング動作の学習において,より優れた性能を享受できる。
論文 参考訳(メタデータ) (2021-10-09T02:53:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。