論文の概要: Identify Then Recommend: Towards Unsupervised Group Recommendation
- arxiv url: http://arxiv.org/abs/2410.23757v1
- Date: Thu, 31 Oct 2024 09:24:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 11:30:22.366018
- Title: Identify Then Recommend: Towards Unsupervised Group Recommendation
- Title(参考訳): Identify Then Recommend: Unsupervised Group Recommendation
- Authors: Yue Liu, Shihao Zhu, Tianyuan Yang, Jian Ma, Wenliang Zhong,
- Abstract要約: Group Recommendation (GR)は、ユーザグループにアイテムを推奨することを目的としている。
underlineIdentify underlineThen underlineRecommend(underlineITR)という,教師なしグループレコメンデーションフレームワークを提案する。
我々は産業レコメンデータにITRを配置し、有望な結果を達成する。
- 参考スコア(独自算出の注目度): 13.238029824207151
- License:
- Abstract: Group Recommendation (GR), which aims to recommend items to groups of users, has become a promising and practical direction for recommendation systems. This paper points out two issues of the state-of-the-art GR models. (1) The pre-defined and fixed number of user groups is inadequate for real-time industrial recommendation systems, where the group distribution can shift dynamically. (2) The training schema of existing GR methods is supervised, necessitating expensive user-group and group-item labels, leading to significant annotation costs. To this end, we present a novel unsupervised group recommendation framework named \underline{I}dentify \underline{T}hen \underline{R}ecommend (\underline{ITR}), where it first identifies the user groups in an unsupervised manner even without the pre-defined number of groups, and then two pre-text tasks are designed to conduct self-supervised group recommendation. Concretely, at the group identification stage, we first estimate the adaptive density of each user point, where areas with higher densities are more likely to be recognized as group centers. Then, a heuristic merge-and-split strategy is designed to discover the user groups and decision boundaries. Subsequently, at the self-supervised learning stage, the pull-and-repulsion pre-text task is proposed to optimize the user-group distribution. Besides, the pseudo group recommendation pre-text task is designed to assist the recommendations. Extensive experiments demonstrate the superiority and effectiveness of ITR on both user recommendation (e.g., 22.22\% NDCG@5 $\uparrow$) and group recommendation (e.g., 22.95\% NDCG@5 $\uparrow$). Furthermore, we deploy ITR on the industrial recommender and achieve promising results.
- Abstract(参考訳): グループレコメンデーション(GR, Group Recommendation)は, ユーザグループに商品を推薦することを目的としており, 推薦システムにとって有望かつ実践的な方向性となっている。
本稿では,最新GRモデルの2つの問題点を指摘する。
1) リアルタイム産業レコメンデーションシステムでは, グループ分布が動的に変化するような事前定義された, 固定数のユーザ群が不十分である。
2)既存のGRメソッドのトレーニングスキーマは,高価なユーザグループとグループイテムラベルを必要とするため,大幅なアノテーションコストがかかる。
そこで本研究では,事前に定義された数のグループであっても,まずユーザグループを教師なしで識別し,さらに2つのプレテキストタスクを自己教師付きグループレコメンデーションとして設計する,新しい教師なしグループレコメンデーションフレームワークを提案する。
具体的には、グループ識別の段階では、まず各ユーザポイントの適応密度を推定する。
そして、ユーザグループと意思決定境界を見つけるために、ヒューリスティックなマージ・アンド・スプリット戦略を設計する。
その後、自己指導型学習段階では、ユーザグループ分布を最適化するために、プル・アンド・リプル・プレテキストタスクが提案される。
さらに、擬似グループレコメンデーションプレテキストタスクは、レコメンデーションを支援するように設計されている。
大規模な実験では、ITRがユーザ推薦(例: 22.22\% NDCG@5 $\uparrow$)とグループ推薦(例: 22.95\% NDCG@5 $\uparrow$)の両方において優位性と有効性を示す。
さらに,産業レコメンデータにITRを配置し,有望な結果を得る。
関連論文リスト
- AlignGroup: Learning and Aligning Group Consensus with Member Preferences for Group Recommendation [7.8148534870343225]
グループ活動は、人間の社会において重要な行動であり、グループに対するパーソナライズされたレコメンデーションを提供することをグループレコメンデーションタスクと呼ぶ。
本稿では,グループコンセンサスとグループメンバーの個人選好の両方に着目し,グループ決定を推測するグループ推薦手法であるAlignGroupを提案する。
論文 参考訳(メタデータ) (2024-09-04T10:03:09Z) - Focus on the Common Good: Group Distributional Robustness Follows [47.62596240492509]
本稿では,多様なグループ間で共有される特徴の学習を明示的に促進する,新しい,シンプルなアルゴリズムを提案する。
グループDROは、最低の正規化損失を持つグループに焦点を当て、代わりに、他のグループでもより良いパフォーマンスを実現するグループに焦点を当てるが、共有/共通機能を学ぶことにつながる可能性がある。
論文 参考訳(メタデータ) (2021-10-06T09:47:41Z) - Double-Scale Self-Supervised Hypergraph Learning for Group
Recommendation [35.841350982832545]
グループレコメンデーションは、データスパシティの問題に深刻な問題を抱えています。
本稿では,グループ推薦のための自己教師付きハイパーグラフ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-09T12:19:49Z) - Just Train Twice: Improving Group Robustness without Training Group
Information [101.84574184298006]
経験的リスク最小化による標準トレーニングは、特定のグループにおける平均的かつ低い精度で高い精度を達成するモデルを生成することができる。
群分布的ロバストな最適化 (group DRO) のような、最悪のグループ精度を達成する以前のアプローチでは、トレーニングポイントごとに高価なグループアノテーションが必要である。
本稿では,複数のエポックに対して標準的なERMモデルを訓練し,第1モデルが誤分類したトレーニング例を重み付けする第2モデルを訓練する,単純な2段階のアプローチであるJTTを提案する。
論文 参考訳(メタデータ) (2021-07-19T17:52:32Z) - Learning Multi-Attention Context Graph for Group-Based Re-Identification [214.84551361855443]
オーバーラップしていないカメラシステムを介して人々のグループを再識別または取得することを学ぶことは、ビデオ監視において重要なアプリケーションです。
本研究では,グループre-idというグループを識別するためのコンテキスト情報の利用を検討する。
本研究では,グループベースリドタスクを同時に処理するグラフニューラルネットワークに基づく新しい統合フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-29T09:57:47Z) - DeepGroup: Representation Learning for Group Recommendation with
Implicit Feedback [0.5584060970507505]
我々は、好みが不明な新しいユーザーグループへの推薦に重点を置いているが、他のグループの決定や選択が与えられている。
一連のグループとその観察された決定を考えると、グループ決定予測は、新しいグループのユーザーの決定を予測することを意図しています。
逆の社会的選択は、観察されたグループ決定に関わるユーザの好みを推測することを目的としています。
論文 参考訳(メタデータ) (2021-03-13T02:05:26Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
グループレコメンデータシステムは、ユーザの個人的な好みだけでなく、嗜好集約戦略も正確に学習できなければならない。
本稿では,BGEM(Bipartite Graphding Model)とGCN(Graph Convolutional Networks)を基本構造として,グループとユーザ表現を統一的に学習する。
論文 参考訳(メタデータ) (2020-10-02T07:11:19Z) - Summary-Source Proposition-level Alignment: Task, Datasets and
Supervised Baseline [94.0601799665342]
資料の参照要約における文のアライメントは,補助的な要約作業として有用であった。
本稿では,2つの重要な新機能を導入しながら,要約ソースアライメントを明示的なタスクとして確立することを提案する。
我々は提案レベルのアライメントのための新しいトレーニングデータセットを作成し、利用可能な要約評価データから自動的に抽出する。
教師なしアプローチよりも優れたアライメント品質を示す教師付き命題アライメントベースラインモデルを提案する。
論文 参考訳(メタデータ) (2020-09-01T17:27:12Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
逐次リコメンデーションタスクのための自己指導型強化学習を提案する。
提案手法は,2つの出力層を持つ標準レコメンデーションモデルを強化する。
このようなアプローチに基づいて、自己監督型Q-ラーニング(SQN)と自己監督型アクター・クライブ(SAC)という2つのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T11:18:57Z) - GroupIM: A Mutual Information Maximization Framework for Neural Group
Recommendation [24.677145454396822]
本研究では,歴史的活動が限定的あるいは全くないユーザで構成された短命グループを対象とした項目推薦の課題について検討する。
現存する研究は、活動の歴史がかなりある永続的なグループをターゲットにしているが、短命なグループは歴史的な相互作用を欠いている。
本研究では、同一グループに属するユーザ間の嗜好共分散と、各グループに対する個人の嗜好の文脈的関連性の両方を活用するために、データ駆動型正規化戦略を提案する。
論文 参考訳(メタデータ) (2020-06-05T23:18:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。