Graph Neural Networks Uncover Geometric Neural Representations in Reinforcement-Based Motor Learning
- URL: http://arxiv.org/abs/2410.23812v1
- Date: Thu, 31 Oct 2024 10:54:50 GMT
- Title: Graph Neural Networks Uncover Geometric Neural Representations in Reinforcement-Based Motor Learning
- Authors: Federico Nardi, Jinpei Han, Shlomi Haar, A. Aldo Faisal,
- Abstract summary: Graph Neural Networks (GNN) can capture the geometric properties of neural representations in EEG data.
We study how reinforcement-based motor learning affects neural activity patterns during motor planning.
- Score: 3.379988469252273
- License:
- Abstract: Graph Neural Networks (GNN) can capture the geometric properties of neural representations in EEG data. Here we utilise those to study how reinforcement-based motor learning affects neural activity patterns during motor planning, leveraging the inherent graph structure of EEG channels to capture the spatial relationships in brain activity. By exploiting task-specific symmetries, we define different pretraining strategies that not only improve model performance across all participant groups but also validate the robustness of the geometric representations. Explainability analysis based on the graph structures reveals consistent group-specific neural signatures that persist across pretraining conditions, suggesting stable geometric structures in the neural representations associated with motor learning and feedback processing. These geometric patterns exhibit partial invariance to certain task space transformations, indicating symmetries that enable generalisation across conditions while maintaining specificity to individual learning strategies. This work demonstrates how GNNs can uncover the effects of previous outcomes on motor planning, in a complex real-world task, providing insights into the geometric principles governing neural representations. Our experimental design bridges the gap between controlled experiments and ecologically valid scenarios, offering new insights into the organisation of neural representations during naturalistic motor learning, which may open avenues for exploring fundamental principles governing brain activity in complex tasks.
Related papers
- Pushing the Limits of All-Atom Geometric Graph Neural Networks: Pre-Training, Scaling and Zero-Shot Transfer [15.302727191576784]
Geometric graph neural networks (Geom-GNNs) with all-atom information have transformed atomistic simulations.
We study the scaling behaviors of Geom-GNNs under self-supervised pre-training, supervised and unsupervised learning setups.
We show how all-atom graph embedding can be organically combined with other neural architectures to enhance the expressive power.
arXiv Detail & Related papers (2024-10-29T03:07:33Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Probing Biological and Artificial Neural Networks with Task-dependent
Neural Manifolds [12.037840490243603]
We investigate the internal mechanisms of neural networks through the lens of neural population geometry.
We quantitatively characterize how different learning objectives lead to differences in the organizational strategies of these models.
These analyses present a strong direction for bridging mechanistic and normative theories in neural networks through neural population geometry.
arXiv Detail & Related papers (2023-12-21T20:40:51Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Randomly Weighted Neuromodulation in Neural Networks Facilitates
Learning of Manifolds Common Across Tasks [1.9580473532948401]
Geometric Sensitive Hashing functions are neural network models that learn class-specific manifold geometry in supervised learning.
We show that a randomly weighted neural network with a neuromodulation system can realize this function.
arXiv Detail & Related papers (2023-11-17T15:22:59Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Geometric Knowledge Distillation: Topology Compression for Graph Neural
Networks [80.8446673089281]
We study a new paradigm of knowledge transfer that aims at encoding graph topological information into graph neural networks (GNNs)
We propose Neural Heat Kernel (NHK) to encapsulate the geometric property of the underlying manifold concerning the architecture of GNNs.
A fundamental and principled solution is derived by aligning NHKs on teacher and student models, dubbed as Geometric Knowledge Distillation.
arXiv Detail & Related papers (2022-10-24T08:01:58Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
We present a new cognitive architecture that combines two neurobiologically plausible, computational models.
We aim to develop a cognitive architecture that has the power of modern machine learning techniques.
arXiv Detail & Related papers (2022-03-31T04:44:28Z) - An explainability framework for cortical surface-based deep learning [110.83289076967895]
We develop a framework for cortical surface-based deep learning.
First, we adapted a perturbation-based approach for use with surface data.
We show that our explainability framework is not only able to identify important features and their spatial location but that it is also reliable and valid.
arXiv Detail & Related papers (2022-03-15T23:16:49Z) - Neural population geometry: An approach for understanding biological and
artificial neural networks [3.4809730725241605]
We review examples of geometrical approaches providing insight into the function of biological and artificial neural networks.
Neural population geometry has the potential to unify our understanding of structure and function in biological and artificial neural networks.
arXiv Detail & Related papers (2021-04-14T18:10:34Z) - A Graph Neural Network Framework for Causal Inference in Brain Networks [0.3392372796177108]
A central question in neuroscience is how self-organizing dynamic interactions in the brain emerge on their relatively static backbone.
We present a graph neural network (GNN) framework to describe functional interactions based on structural anatomical layout.
We show that GNNs are able to capture long-term dependencies in data and also scale up to the analysis of large-scale networks.
arXiv Detail & Related papers (2020-10-14T15:01:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.