論文の概要: Counterfactual MRI Data Augmentation using Conditional Denoising Diffusion Generative Models
- arxiv url: http://arxiv.org/abs/2410.23835v1
- Date: Thu, 31 Oct 2024 11:29:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:02:28.862062
- Title: Counterfactual MRI Data Augmentation using Conditional Denoising Diffusion Generative Models
- Title(参考訳): 条件付き denoising Diffusion Generative Model を用いたMRIデータ拡張
- Authors: Pedro Morão, Joao Santinha, Yasna Forghani, Nuno Loução, Pedro Gouveia, Mario A. T. Figueiredo,
- Abstract要約: 医用画像の深層学習モデルにおける画像取得パラメータ(IAP)の変動による一般化性とロバスト性の問題
患者解剖を変更せずに異なるIAPをシミュレートするMR画像を生成するために, 条件付き縮退拡散生成モデル(cDDGM)を用いた新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep learning (DL) models in medical imaging face challenges in generalizability and robustness due to variations in image acquisition parameters (IAP). In this work, we introduce a novel method using conditional denoising diffusion generative models (cDDGMs) to generate counterfactual magnetic resonance (MR) images that simulate different IAP without altering patient anatomy. We demonstrate that using these counterfactual images for data augmentation can improve segmentation accuracy, particularly in out-of-distribution settings, enhancing the overall generalizability and robustness of DL models across diverse imaging conditions. Our approach shows promise in addressing domain and covariate shifts in medical imaging. The code is publicly available at https: //github.com/pedromorao/Counterfactual-MRI-Data-Augmentation
- Abstract(参考訳): 医用画像における深層学習(DL)モデルは、画像取得パラメータ(IAP)の変動による一般化性と堅牢性の課題に直面している。
本研究では, 患者解剖を変更せずに異なるIAPをシミュレートするMR画像を生成するために, 条件分解拡散生成モデル(cDDGM)を用いた新しい手法を提案する。
データ拡張にこれらの反ファクト画像を使用することで、特にアウト・オブ・ディストリビューション・セッティングにおいてセグメンテーションの精度が向上し、多様な画像条件におけるDLモデルの全体的な一般化性と堅牢性を向上させることが実証された。
我々のアプローチは、医療画像における領域と共変量の変化に対処する上で有望であることを示す。
コードはhttps: //github.com/pedromorao/Counterfactual-MRI-Data-Augmentationで公開されている。
関連論文リスト
- Ambient Denoising Diffusion Generative Adversarial Networks for Establishing Stochastic Object Models from Noisy Image Data [4.069144210024564]
本稿では,ノイズの多い画像データから現実的なSOMを学習するための拡張DDGANアーキテクチャであるADDGANを提案する。
雑音の多い画像データから現実的なSOMを学習する能力を示す。
論文 参考訳(メタデータ) (2025-01-31T12:40:43Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
大規模なデータセットのトレーニングによるスケーリングは、画像生成の品質と忠実度を高め、拡散モデルによる操作を可能にすることが示されている。
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
本研究は,異なる微調整方式と組み合わせた場合,様々なシナリオにおいて顕著な性能向上を示すものである。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Cross-conditioned Diffusion Model for Medical Image to Image Translation [22.020931436223204]
医用画像から画像への変換のためのクロスコンディショニング拡散モデル(CDM)を提案する。
まず、目的のモダリティの分布をモデル化するためのモダリティ固有表現モデル(MRM)を提案する。
そして、MDN(Modality-Decoupled Diffusion Network)を設計し、MRMから効率よく効果的に分布を学習する。
論文 参考訳(メタデータ) (2024-09-13T02:48:56Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological
Report [0.0]
インペイントアルゴリズムは、入力画像の1つ以上の領域を変更することができるDL生成モデルのサブセットである。
これらのアルゴリズムの性能は、その限られた出力量のために、しばしば準最適である。
拡散確率モデル(DDPM)は、GANに匹敵する品質の結果を生成することができる、最近導入された生成ネットワークのファミリーである。
論文 参考訳(メタデータ) (2022-10-21T17:13:14Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
本研究では,高画質,多彩で現実的な拡散重み付き磁気共鳴画像が深部生成モデルを用いて合成可能であることを示す。
Introspective Variational AutoencoderとStyle-Based GANの2つのネットワークを医療分野におけるデータ拡張の資格として提示する。
論文 参考訳(メタデータ) (2020-06-24T18:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。