論文の概要: Beyond Content Relevance: Evaluating Instruction Following in Retrieval Models
- arxiv url: http://arxiv.org/abs/2410.23841v1
- Date: Thu, 31 Oct 2024 11:47:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 11:30:29.411524
- Title: Beyond Content Relevance: Evaluating Instruction Following in Retrieval Models
- Title(参考訳): コンテンツ関連性を超えて: 検索モデルにおける指示追従の評価
- Authors: Jianqun Zhou, Yuanlei Zheng, Wei Chen, Qianqian Zheng, Zeyuan Shang, Wei Zhang, Rui Meng, Xiaoyu Shen,
- Abstract要約: 本研究では,コンテンツ関連性を超えた各種検索モデルの指示追従能力について検討した。
6つの文書レベル属性にまたがる新しい検索評価ベンチマークを開発した。
以上の結果から,再ランク付けモデルが後続命令の検索モデルを上回っているのに対して,特定の属性を扱う上では依然として課題に直面していることが明らかとなった。
- 参考スコア(独自算出の注目度): 17.202017214385826
- License:
- Abstract: Instruction-following capabilities in large language models (LLMs) have significantly progressed, enabling more complex user interactions through detailed prompts. However, retrieval systems have not matched these advances, most of them still relies on traditional lexical and semantic matching techniques that fail to fully capture user intent. Recent efforts have introduced instruction-aware retrieval models, but these primarily focus on intrinsic content relevance, which neglects the importance of customized preferences for broader document-level attributes. This study evaluates the instruction-following capabilities of various retrieval models beyond content relevance, including LLM-based dense retrieval and reranking models. We develop InfoSearch, a novel retrieval evaluation benchmark spanning six document-level attributes: Audience, Keyword, Format, Language, Length, and Source, and introduce novel metrics -- Strict Instruction Compliance Ratio (SICR) and Weighted Instruction Sensitivity Evaluation (WISE) to accurately assess the models' responsiveness to instructions. Our findings reveal that while reranking models generally surpass retrieval models in instruction following, they still face challenges in handling certain attributes. Moreover, although instruction fine-tuning and increased model size lead to better performance, most models fall short of achieving comprehensive instruction compliance as assessed by our benchmark.
- Abstract(参考訳): 大規模言語モデル(LLM)の命令追従能力は大幅に進歩し、詳細なプロンプトを通じてより複雑なユーザインタラクションを可能にした。
しかし、検索システムはこれらの進歩と一致していないが、そのほとんどが従来の語彙や意味的なマッチング技術に依存しており、ユーザーの意図を完全に把握できない。
近年、命令対応検索モデルを導入しているが、これらは主に、より広範な文書レベルの属性に対するカスタマイズされた嗜好の重要性を無視した、本質的なコンテンツ関連性に焦点を当てている。
本研究は,LLMに基づく高密度検索や再ランク付けモデルを含む,コンテンツ関連性を超えた各種検索モデルの指示追従能力を評価する。
本研究では,6つの文書レベル属性にまたがる新しい検索評価ベンチマークであるInfoSearchを開発し,新しい指標であるStrict Instruction Compliance Ratio (SICR)とWeighted Instruction Sensitivity Evaluation (WISE)を導入し,モデルの指示に対する応答性を正確に評価する。
以上の結果から,再ランク付けモデルが後続命令の検索モデルを上回っているのに対して,特定の属性を扱う上では依然として課題に直面していることが明らかとなった。
さらに,命令の微調整やモデルサイズの増加により性能が向上するが,ベンチマークで評価したように,ほとんどのモデルでは包括的命令コンプライアンスの実現には至っていない。
関連論文リスト
- Benchmarking Large Language Models for Conversational Question Answering in Multi-instructional Documents [61.41316121093604]
対話型質問応答(CQA)の文脈における大規模言語モデル(LLM)を評価するための新しいベンチマークであるInsCoQAを提案する。
InsCoQAは、百科事典スタイルの教育内容から派生したもので、複数の文書から手続き的ガイダンスを抽出し、解釈し、正確に要約する能力のモデルを評価する。
また,LLM支援型評価器であるInsEvalを提案する。
論文 参考訳(メタデータ) (2024-10-01T09:10:00Z) - SC-Rec: Enhancing Generative Retrieval with Self-Consistent Reranking for Sequential Recommendation [18.519480704213017]
SC-Recは2つの異なる項目の指標と複数のプロンプトテンプレートから多様な嗜好知識を学習する統合レコメンデータシステムである。
SC-Recはシーケンシャルレコメンデーションのための最先端の手法よりも優れており、モデルの様々な出力から補完的な知識を効果的に取り入れている。
論文 参考訳(メタデータ) (2024-08-16T11:59:01Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVENは検索強化されたマスク付き言語モデリングとプレフィックス言語モデリングを組み合わせたモデルである。
フュージョン・イン・コンテキスト・ラーニング(Fusion-in-Context Learning)により、追加のトレーニングを必要とせずに、より多くのコンテキスト内サンプルを利用できる。
本研究は,テキスト内学習のためのエンコーダ・デコーダ言語モデルの構築の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-08-15T17:59:18Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
我々は,クエリとユーザが関連すると考えるドキュメントとの類似性に基づいて,文書を再参照するkNNアプローチを提案する。
異なる統合戦略を評価するため、既存の4つの情報検索データセットを関連フィードバックシナリオに変換する。
論文 参考訳(メタデータ) (2022-10-19T16:19:37Z) - EditEval: An Instruction-Based Benchmark for Text Improvements [73.5918084416016]
編集機能の自動評価のためのインストラクションベース、ベンチマーク、評価スイートであるEditEvalを提示する。
InstructGPTとPEERが最良であることを示す事前学習モデルをいくつか評価するが,ほとんどのベースラインは教師付きSOTA以下である。
我々の分析は、タスクの編集によく使われるメトリクスが必ずしも相関しているとは限らないことを示し、最高の性能を持つプロンプトに対する最適化は、必ずしも異なるモデルに対して強い堅牢性を持つとは限らないことを示唆している。
論文 参考訳(メタデータ) (2022-09-27T12:26:05Z) - Who Explains the Explanation? Quantitatively Assessing Feature
Attribution Methods [0.0]
本稿では,説明の忠実度を定量化するための新しい評価指標であるフォーカス(Focus)を提案する。
ランダム化実験によって測定値のロバスト性を示し、次にFocusを用いて3つの一般的な説明可能性手法を評価し比較する。
実験の結果,LRPとGradCAMは一貫性があり信頼性が高いことがわかった。
論文 参考訳(メタデータ) (2021-09-28T07:10:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。