論文の概要: RAGraph: A General Retrieval-Augmented Graph Learning Framework
- arxiv url: http://arxiv.org/abs/2410.23855v2
- Date: Sat, 07 Dec 2024 10:34:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:50:11.413274
- Title: RAGraph: A General Retrieval-Augmented Graph Learning Framework
- Title(参考訳): RAGraph: 一般的な検索機能を備えたグラフ学習フレームワーク
- Authors: Xinke Jiang, Rihong Qiu, Yongxin Xu, Wentao Zhang, Yichen Zhu, Ruizhe Zhang, Yuchen Fang, Xu Chu, Junfeng Zhao, Yasha Wang,
- Abstract要約: 我々は、RAGraph(General Retrieval-Augmented Graph Learning)と呼ばれる新しいフレームワークを紹介する。
RAGraphは、一般的なグラフ基盤モデルに外部グラフデータを導入し、目に見えないシナリオにおけるモデルの一般化を改善する。
推論中、RAGraphは下流タスクにおける重要な類似性に基づいて、似たようなおもちゃのグラフを順応的に検索する。
- 参考スコア(独自算出の注目度): 35.25522856244149
- License:
- Abstract: Graph Neural Networks (GNNs) have become essential in interpreting relational data across various domains, yet, they often struggle to generalize to unseen graph data that differs markedly from training instances. In this paper, we introduce a novel framework called General Retrieval-Augmented Graph Learning (RAGraph), which brings external graph data into the general graph foundation model to improve model generalization on unseen scenarios. On the top of our framework is a toy graph vector library that we established, which captures key attributes, such as features and task-specific label information. During inference, the RAGraph adeptly retrieves similar toy graphs based on key similarities in downstream tasks, integrating the retrieved data to enrich the learning context via the message-passing prompting mechanism. Our extensive experimental evaluations demonstrate that RAGraph significantly outperforms state-of-the-art graph learning methods in multiple tasks such as node classification, link prediction, and graph classification across both dynamic and static datasets. Furthermore, extensive testing confirms that RAGraph consistently maintains high performance without the need for task-specific fine-tuning, highlighting its adaptability, robustness, and broad applicability.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、さまざまな領域にわたる関係データの解釈に欠かせないものとなっているが、トレーニングインスタンスと大きく異なる未確認グラフデータへの一般化に苦慮することが多い。
本稿では,一般検索型グラフ学習(RAGraph)と呼ばれる新しいフレームワークを紹介し,一般グラフ基盤モデルに外部グラフデータを導入し,目に見えないシナリオにおけるモデル一般化を改善する。
フレームワークの上部には、我々が確立したトイグラフベクトルライブラリがあり、機能やタスク固有のラベル情報といった重要な属性をキャプチャします。
推論中、RAGraphは下流タスクのキー類似性に基づいて類似したトイグラフを積極的に検索し、検索したデータを統合して、メッセージパッシングプロンプト機構を通じて学習コンテキストを充実させる。
実験により,RAGraphはノード分類,リンク予測,グラフ分類などの複数のタスクにおいて,動的および静的なデータセットにおいて,最先端のグラフ学習手法よりも大幅に優れることを示した。
さらに、広範なテストにより、RAGraphはタスク固有の微調整を必要とせず、高いパフォーマンスを維持し、適応性、堅牢性、幅広い適用性を強調している。
関連論文リスト
- AnyGraph: Graph Foundation Model in the Wild [16.313146933922752]
グラフ基盤モデルは、グラフデータから堅牢で一般化可能な表現を学ぶ可能性を提供します。
本研究では,主要な課題に対処するために設計された統一グラフモデルであるAnyGraphについて検討する。
多様な38のグラフデータセットに対する実験は、AnyGraphの強力なゼロショット学習性能を実証した。
論文 参考訳(メタデータ) (2024-08-20T09:57:13Z) - UniGraph: Learning a Unified Cross-Domain Foundation Model for Text-Attributed Graphs [30.635472655668078]
Text-Attributed Graphs (TAG) は、さまざまなドメインにまたがる見えないグラフやタスクに一般化することができる。
本稿では,言語モデル (LM) とグラフニューラルネットワーク (GNN) をバックボーンネットワークとして,新しいケースドアーキテクチャを提案する。
本モデルの有効性を,未確認グラフの自己教師型表現学習,少数ショットインコンテキスト転送,ゼロショット転送で実証する。
論文 参考訳(メタデータ) (2024-02-21T09:06:31Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
グラフニューラルネットワーク(GNN)は、グラフ構造を理解するために進化してきた。
堅牢性を高めるために、自己教師付き学習(SSL)はデータ拡張の重要なツールとなっている。
本研究は,ゼロショット学習環境におけるグラフモデルの一般化を推し進めることによって,この問題に対処する。
論文 参考訳(メタデータ) (2023-10-19T06:17:46Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - Semi-Supervised Graph Attention Networks for Event Representation
Learning [0.0]
本稿では,グラフ注意ネットワークとグラフ正規化を組み合わせたGNEE(GAT Neural Event Embeddings)を提案する。
5つの実世界のイベントグラフと6つのグラフ埋め込みによる実験結果の統計的解析により、GNEEは最先端の半教師付きグラフ埋め込み法より優れていることが示された。
論文 参考訳(メタデータ) (2022-01-02T14:38:28Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
自己教師付き全グラフ表現学習のためのローカル・インスタンスとグローバル・セマンティック・ラーニング(GraphLoG)という統合フレームワークを提案する。
GraphLoGは、局所的な類似点の保存に加えて、グローバルなセマンティッククラスタをキャプチャする階層的なプロトタイプも導入している。
モデル学習のための効率的なオンライン予測最大化(EM)アルゴリズムがさらに開発された。
論文 参考訳(メタデータ) (2021-06-08T05:25:38Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Hierarchical Adaptive Pooling by Capturing High-order Dependency for
Graph Representation Learning [18.423192209359158]
グラフニューラルネットワーク(GNN)はノードレベルのグラフ表現学習タスクでグラフ構造化データを扱うのに十分成熟していることが証明されている。
本稿では,グラフ構造に適応する階層型グラフレベルの表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-13T06:22:24Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。