Can Language Models Perform Robust Reasoning in Chain-of-thought Prompting with Noisy Rationales?
- URL: http://arxiv.org/abs/2410.23856v1
- Date: Thu, 31 Oct 2024 12:07:44 GMT
- Title: Can Language Models Perform Robust Reasoning in Chain-of-thought Prompting with Noisy Rationales?
- Authors: Zhanke Zhou, Rong Tao, Jianing Zhu, Yiwen Luo, Zengmao Wang, Bo Han,
- Abstract summary: This paper investigates an under-explored challenge in large language models (LLMs): chain-of-thought prompting with noisy rationales.
We construct NoRa dataset that is tailored to evaluate the robustness of reasoning in the presence of noisy rationales.
We propose the method of contrastive denoising with noisy chain-of-thought (CD-CoT)
- Score: 19.13886382791074
- License:
- Abstract: This paper investigates an under-explored challenge in large language models (LLMs): chain-of-thought prompting with noisy rationales, which include irrelevant or inaccurate reasoning thoughts within examples used for in-context learning. We construct NoRa dataset that is tailored to evaluate the robustness of reasoning in the presence of noisy rationales. Our findings on NoRa dataset reveal a prevalent vulnerability to such noise among current LLMs, with existing robust methods like self-correction and self-consistency showing limited efficacy. Notably, compared to prompting with clean rationales, base LLM drops by 1.4%-19.8% in accuracy with irrelevant thoughts and more drastically by 2.2%-40.4% with inaccurate thoughts. Addressing this challenge necessitates external supervision that should be accessible in practice. Here, we propose the method of contrastive denoising with noisy chain-of-thought (CD-CoT). It enhances LLMs' denoising-reasoning capabilities by contrasting noisy rationales with only one clean rationale, which can be the minimal requirement for denoising-purpose prompting. This method follows a principle of exploration and exploitation: (1) rephrasing and selecting rationales in the input space to achieve explicit denoising and (2) exploring diverse reasoning paths and voting on answers in the output space. Empirically, CD-CoT demonstrates an average improvement of 17.8% in accuracy over the base model and shows significantly stronger denoising capabilities than baseline methods. The source code is publicly available at: https://github.com/tmlr-group/NoisyRationales.
Related papers
- Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
We present a light-weight approach for detecting nonfactual outputs from retrieval-augmented generation (RAG)
We compute a factuality score that can be thresholded to yield a binary decision.
Our experiments show high area under the ROC curve (AUC) across a wide range of relevant open source datasets.
arXiv Detail & Related papers (2024-11-01T20:44:59Z) - On the Noise Robustness of In-Context Learning for Text Generation [41.59602454113563]
In this work, we show that, on text generation tasks, noisy annotations significantly hurt the performance of in-context learning.
To circumvent the issue, we propose a simple and effective approach called Local Perplexity Ranking (LPR)
LPR replaces the "noisy" candidates with their nearest neighbors that are more likely to be clean.
arXiv Detail & Related papers (2024-05-27T15:22:58Z) - Evidence to Generate (E2G): A Single-agent Two-step Prompting for
Context Grounded and Retrieval Augmented Reasoning [3.117335706912261]
We introduce Evidence to Generate (E2G), a novel single-agent, two-step prompting framework.
Instead of unverified reasoning claims, E2G focuses exclusively on the thought sequences explicitly mentioned in the context.
tool achieves remarkable results robustly across a wide range of knowledge-intensive reasoning and generation tasks.
arXiv Detail & Related papers (2024-01-11T09:49:15Z) - Label Noise: Correcting the Forward-Correction [0.0]
Training neural network classifiers on datasets with label noise poses a risk of overfitting them to the noisy labels.
We propose an approach to tackling overfitting caused by label noise.
Motivated by this observation, we propose imposing a lower bound on the training loss to mitigate overfitting.
arXiv Detail & Related papers (2023-07-24T19:41:19Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Identifying Hard Noise in Long-Tailed Sample Distribution [76.16113794808001]
We introduce Noisy Long-Tailed Classification (NLT)
Most de-noising methods fail to identify the hard noises.
We design an iterative noisy learning framework called Hard-to-Easy (H2E)
arXiv Detail & Related papers (2022-07-27T09:03:03Z) - The Optimal Noise in Noise-Contrastive Learning Is Not What You Think [80.07065346699005]
We show that deviating from this assumption can actually lead to better statistical estimators.
In particular, the optimal noise distribution is different from the data's and even from a different family.
arXiv Detail & Related papers (2022-03-02T13:59:20Z) - Open-set Label Noise Can Improve Robustness Against Inherent Label Noise [27.885927200376386]
We show that open-set noisy labels can be non-toxic and even benefit the robustness against inherent noisy labels.
We propose a simple yet effective regularization by introducing Open-set samples with Dynamic Noisy Labels (ODNL) into training.
arXiv Detail & Related papers (2021-06-21T07:15:50Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z) - Learning based signal detection for MIMO systems with unknown noise
statistics [84.02122699723536]
This paper aims to devise a generalized maximum likelihood (ML) estimator to robustly detect signals with unknown noise statistics.
In practice, there is little or even no statistical knowledge on the system noise, which in many cases is non-Gaussian, impulsive and not analyzable.
Our framework is driven by an unsupervised learning approach, where only the noise samples are required.
arXiv Detail & Related papers (2021-01-21T04:48:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.