SEAL: Steerable Reasoning Calibration of Large Language Models for Free
- URL: http://arxiv.org/abs/2504.07986v1
- Date: Mon, 07 Apr 2025 02:42:07 GMT
- Title: SEAL: Steerable Reasoning Calibration of Large Language Models for Free
- Authors: Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, Zhangyang Wang,
- Abstract summary: Large Language Models (LLMs) have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism.<n>Recent studies reveal substantial redundancy in the CoT reasoning traces, which negatively impacts model performance.<n>We introduce SEAL, a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains.
- Score: 58.190800043449336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs), such as OpenAI's o1-series have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism. However, recent studies reveal substantial redundancy in the CoT reasoning traces, which not only increases inference latency but also negatively impacts model performance by diverting attention to unnecessary reasoning paths. To address this issue, we investigate the internal reasoning structures of LLMs and categorize them into three primary thought types: execution, reflection, and transition thoughts. Moreover, our analysis reveals that excessive reflection and transition thoughts are strongly correlated with failure cases and these thought categories exhibit clear separation in the latent space. Based on these, we introduce SEAL (Steerable reasoning calibration), a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains. SEAL consists of an offline stage for extracting the reasoning steering vector in the latent space, followed by an on-the-fly calibration of the reasoning trace through representation intervention using the steering vector. Notably, the steering vector exhibits strong transferability across various tasks. Extensive experiments across multiple models (DeepSeek-R1-Distill and QwQ-32B-Preview) and benchmarks (Math500, GSM8K, LiveCodeBench) validate the effectiveness of SEAL, up to a 11% improvement in accuracy while reducing reasoning tokens by 11.8% to 50.4%. Our code is publicly available at https://github.com/VITA-Group/SEAL.
Related papers
- Do Reasoning Models Show Better Verbalized Calibration? [19.776645881640178]
We investigate the calibration properties of LRMs trained via supervised fine-tuning distillation on long reasoning traces.<n>Our findings reveal that LRMs significantly outperform instruction-tuned models on complex reasoning tasks in both accuracy and confidence calibration.<n>Our results provide evidence for a potentially critical role of reasoning-oriented RL training in improving LLMs' capacity for generating trustworthy, self-aware outputs.
arXiv Detail & Related papers (2025-04-09T03:58:19Z) - ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation [38.64751082999587]
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy.<n>We propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations.<n>Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG)
arXiv Detail & Related papers (2025-03-27T17:44:18Z) - GTR: Guided Thought Reinforcement Prevents Thought Collapse in RL-based VLM Agent Training [62.536191233049614]
Reinforcement learning with verifiable outcome rewards (RLVR) has effectively scaled up chain-of-thought (CoT) reasoning in large language models (LLMs)<n>This work investigates this problem through extensive experiments on complex card games, such as 24 points, and embodied tasks from ALFWorld.<n>We find that when rewards are based solely on action outcomes, RL fails to incentivize CoT reasoning in VLMs, instead leading to a phenomenon we termed thought collapse.
arXiv Detail & Related papers (2025-03-11T15:17:02Z) - R1-Zero's "Aha Moment" in Visual Reasoning on a 2B Non-SFT Model [70.77691645678804]
We present the first successful replication of emergent characteristics for multimodal reasoning on only a non-SFT 2B model.<n>Our model achieves 59.47% accuracy on CVBench, outperforming the base model by approximately 30% and exceeding both SFT setting by 2%.<n>In addition, we share our failed attempts and insights in attempting to achieve R1-like reasoning using RL with instruct models.
arXiv Detail & Related papers (2025-03-07T04:21:47Z) - Quantifying Logical Consistency in Transformers via Query-Key Alignment [20.636818928993684]
We propose a novel, lightweight evaluation strategy for logical reasoning.<n>By computing a single forward pass and extracting a "QK-score" from carefully chosen heads, our method reveals latent representations that reliably separate valid from invalid inferences.
arXiv Detail & Related papers (2025-02-24T10:02:50Z) - Unveiling Reasoning Thresholds in Language Models: Scaling, Fine-Tuning, and Interpretability through Attention Maps [3.8936716676293917]
This study investigates the in-context learning capabilities of various decoder-only transformer-based language models with different model sizes and training data.<n>We identify a critical parameter threshold (1.6 billion), beyond which reasoning performance improves significantly in tasks such as commonsense reasoning in multiple-choice question answering and deductive reasoning.
arXiv Detail & Related papers (2025-02-21T00:48:32Z) - Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning [23.99454995087634]
We explore the potential of rule-based reinforcement learning in large reasoning models.<n>We use synthetic logic puzzles as training data due to their controllable complexity and straightforward answer verification.<n>Our 7B model develops advanced reasoning skills-such as reflection, verification, and summarization-that are absent from the logic corpus.
arXiv Detail & Related papers (2025-02-20T17:49:26Z) - Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning [65.2421542320293]
Reasoning abilities are crucial components of general intelligence.<n>Recent advances by proprietary companies, such as o-series models of OpenAI, have made remarkable progress on reasoning tasks.<n>This paper proposes a new RL framework, termed OREAL, to pursue the performance limit that can be achieved through textbfOutcome textbfREwtextbfArd-based reinforcement textbfLearning for mathematical reasoning tasks.
arXiv Detail & Related papers (2025-02-10T18:57:29Z) - Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection [73.31406286956535]
We introduce the Ladder-of-Thought (LoT) for the stance detection task.
LoT directs the small LMs to assimilate high-quality external knowledge, refining the intermediate rationales produced.
Our empirical evaluations underscore LoT's efficacy, marking a 16% improvement over GPT-3.5 and a 10% enhancement compared to GPT-3.5 with CoT on stance detection task.
arXiv Detail & Related papers (2023-08-31T14:31:48Z) - Self-Evaluation Guided Beam Search for Reasoning [61.523627290397556]
We introduce a stepwise self-evaluation mechanism to guide and calibrate the reasoning process of Large Language Model (LLM)
We propose a decoding algorithm integrating the self-evaluation guidance via beam search.
Our approach surpasses the corresponding Codex-backboned baselines in few-shot accuracy by $6.34%$, $9.56%$, and $5.46%$ on the GSM8K, AQuA, and StrategyQA.
arXiv Detail & Related papers (2023-05-01T02:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.