論文の概要: Neural Network Verification with PyRAT
- arxiv url: http://arxiv.org/abs/2410.23903v1
- Date: Thu, 31 Oct 2024 13:05:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:02:52.351948
- Title: Neural Network Verification with PyRAT
- Title(参考訳): PyRATによるニューラルネットワークの検証
- Authors: Augustin Lemesle, Julien Lehmann, Tristan Le Gall,
- Abstract要約: ニューラルネットワークの安全性を検証するための抽象解釈に基づくツールであるPyRATを提案する。
本稿では、ニューラルネットワークの到達可能な状態を見つけるために、PyRATが使用するさまざまな抽象化について述べる。
PyRATはすでに安全保証のためにいくつかの共同作業で使われており、その2位はVNN-Comp 2024で行われた。
- 参考スコア(独自算出の注目度): 1.1470070927586018
- License:
- Abstract: As AI systems are becoming more and more popular and used in various critical domains (health, transport, energy, ...), the need to provide guarantees and trust of their safety is undeniable. To this end, we present PyRAT, a tool based on abstract interpretation to verify the safety and the robustness of neural networks. In this paper, we describe the different abstractions used by PyRAT to find the reachable states of a neural network starting from its input as well as the main features of the tool to provide fast and accurate analysis of neural networks. PyRAT has already been used in several collaborations to ensure safety guarantees, with its second place at the VNN-Comp 2024 showcasing its performance.
- Abstract(参考訳): AIシステムはますます普及し、さまざまな重要な領域(健康、輸送、エネルギー、...)で利用されているので、安全の保証と信頼を提供する必要性は否定できない。
この目的のために,ニューラルネットワークの安全性と堅牢性を検証するための抽象解釈に基づくツールであるPyRATを提案する。
本稿では、PyRATが入力から始まるニューラルネットワークの到達可能な状態と、ニューラルネットワークの高速かつ正確な解析を提供するツールの主な特徴を見つけるために使用する様々な抽象化について述べる。
PyRATはすでに安全保証のためにいくつかの共同作業で使われており、その2位はVNN-Comp 2024で行われた。
関連論文リスト
- Constraint-based Adversarial Example Synthesis [1.2548803788632799]
この研究は、ニューラルネットワークを実装するPythonプログラムをテストするための特殊なテクニックであるConcolic Testingの強化に焦点を当てている。
拡張ツールであるPyCTは、浮動小数点演算やアクティベーション関数計算など、幅広いニューラルネットワーク操作に対応している。
論文 参考訳(メタデータ) (2024-06-03T11:35:26Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Vehicle: Interfacing Neural Network Verifiers with Interactive Theorem
Provers [1.5749416770494706]
車両には、ニューラルネットワーク仕様を記述するための表現力のあるドメイン固有言語が備わっている。
同様のITPの形式化において、保守性とスケーラビリティに関する過去の問題を克服しています。
ニューラルネットワーク検証器であるMarabouをAgdaに接続し、ニューラルネットワークで操縦された車が道路を離れないことを正式に検証することで、その実用性を実証する。
論文 参考訳(メタデータ) (2022-02-10T18:09:23Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Towards Repairing Neural Networks Correctly [6.600380575920419]
本稿では,ニューラルネットワークの正確性を保証するための実行時検証手法を提案する。
実験結果から,本手法は特性を満たすことが保証されたニューラルネットワークを効果的に生成することが示された。
論文 参考訳(メタデータ) (2020-12-03T12:31:07Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z) - Verification of Neural Networks: Enhancing Scalability through Pruning [15.62342143633075]
我々は、最先端の検証ツールが実際に関心のあるニューラルネットワークを扱えるようにすることに重点を置いている。
本稿では,ネットワークプルーニングに基づく新しいトレーニングパイプラインを提案する。
プルーニングアルゴリズムと検証ツールのポートフォリオを用いた実験の結果、我々のアプローチが考慮すべきネットワークの種類に対して成功していることを示す。
論文 参考訳(メタデータ) (2020-03-17T10:54:08Z) - Scalable Quantitative Verification For Deep Neural Networks [44.570783946111334]
ディープニューラルネットワーク(DNN)のためのテスト駆動検証フレームワークを提案する。
本手法は,形式的確率特性の健全性が証明されるまで,十分な試験を行う。
われわれの研究は、現実世界のディープニューラルネットワークが捉えた分布の性質を、証明可能な保証で検証する方法を開拓している。
論文 参考訳(メタデータ) (2020-02-17T09:53:50Z) - Firearm Detection and Segmentation Using an Ensemble of Semantic Neural
Networks [62.997667081978825]
本稿では,意味的畳み込みニューラルネットワークのアンサンブルに基づく兵器検出システムを提案する。
特定のタスクに特化した単純なニューラルネットワークのセットは、計算リソースを少なくし、並列にトレーニングすることができる。
個々のネットワークの出力の集約によって与えられるシステムの全体的な出力は、ユーザが偽陽性と偽陰性とをトレードオフするように調整することができる。
論文 参考訳(メタデータ) (2020-02-11T13:58:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。