An Empirical Analysis of Speech Self-Supervised Learning at Multiple Resolutions
- URL: http://arxiv.org/abs/2410.23955v1
- Date: Thu, 31 Oct 2024 14:09:05 GMT
- Title: An Empirical Analysis of Speech Self-Supervised Learning at Multiple Resolutions
- Authors: Theo Clark, Benedetta Cevoli, Eloy de Jong, Timofey Abramski, Jamie Dougherty,
- Abstract summary: We present an initial analysis of layer-wise representations in multi-scale architectures, with a focus on Canonical Correlation Analysis (CCA) and Mutual Information (MI)
We find that the improved performance on SUPERB tasks is primarily due to the auxiliary low-resolution loss rather than the downsampling itself.
These findings challenge assumptions about the multi-scale nature of MR-HuBERT and motivate the importance of disentangling computational efficiency from learning better representations.
- Score: 0.3495246564946556
- License:
- Abstract: Self-supervised learning (SSL) models have become crucial in speech processing, with recent advancements concentrating on developing architectures that capture representations across multiple timescales. The primary goal of these multi-scale architectures is to exploit the hierarchical nature of speech, where lower-resolution components aim to capture representations that align with increasingly abstract concepts (e.g., from phones to words to sentences). Although multi-scale approaches have demonstrated some improvements over single-scale models, the precise reasons for these enhancements have poor empirical support. In this study, we present an initial analysis of layer-wise representations in multi-scale architectures, with a focus on Canonical Correlation Analysis (CCA) and Mutual Information (MI). We apply this analysis to Multi-Resolution HuBERT (MR-HuBERT) and find that (1) the improved performance on SUPERB tasks is primarily due to the auxiliary low-resolution loss rather than the downsampling itself, and (2) downsampling to lower resolutions neither improves downstream performance nor correlates with higher-level information (e.g., words), though it does improve computational efficiency. These findings challenge assumptions about the multi-scale nature of MR-HuBERT and motivate the importance of disentangling computational efficiency from learning better representations.
Related papers
- Toward Robust Incomplete Multimodal Sentiment Analysis via Hierarchical Representation Learning [21.127950337002776]
Multimodal Sentiment Analysis (MSA) is an important research area that aims to understand and recognize human sentiment through multiple modalities.
We propose a Hierarchical Representation Learning Framework (HRLF) for the task under uncertain missing modalities.
We show that HRLF significantly improves MSA performance under uncertain modality missing cases.
arXiv Detail & Related papers (2024-11-05T04:04:41Z) - Utilizing Large Language Models for Event Deconstruction to Enhance Multimodal Aspect-Based Sentiment Analysis [2.1329326061804816]
This paper introduces Large Language Models (LLMs) for event decomposition and proposes a reinforcement learning framework for Multimodal Aspect-based Sentiment Analysis (MABSA-RL)
Experimental results show that MABSA-RL outperforms existing advanced methods on two benchmark datasets.
arXiv Detail & Related papers (2024-10-18T03:40:45Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.
MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.
Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Efficient Multi-Model Fusion with Adversarial Complementary Representation Learning [26.393644289860084]
Single-model systems often suffer from deficiencies in tasks such as speaker verification (SV) and image classification.
We propose an adversarial complementary representation learning (ACoRL) framework that enables newly trained models to avoid previously acquired knowledge.
arXiv Detail & Related papers (2024-04-24T07:47:55Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
We prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations.
Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem.
arXiv Detail & Related papers (2022-11-26T21:02:09Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Efficient Iterative Amortized Inference for Learning Symmetric and
Disentangled Multi-Object Representations [8.163697683448811]
We introduce EfficientMORL, an efficient framework for the unsupervised learning of object-centric representations.
We show that optimization challenges caused by requiring both symmetry and disentanglement can be addressed by high-cost iterative amortized inference.
We demonstrate strong object decomposition and disentanglement on the standard multi-object benchmark while achieving nearly an order of magnitude faster training and test time inference.
arXiv Detail & Related papers (2021-06-07T14:02:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.