Bridging User Dynamics: Transforming Sequential Recommendations with Schrödinger Bridge and Diffusion Models
- URL: http://arxiv.org/abs/2409.10522v1
- Date: Fri, 30 Aug 2024 09:10:38 GMT
- Title: Bridging User Dynamics: Transforming Sequential Recommendations with Schrödinger Bridge and Diffusion Models
- Authors: Wenjia Xie, Rui Zhou, Hao Wang, Tingjia Shen, Enhong Chen,
- Abstract summary: We introduce the Schr"odinger Bridge into diffusion-based sequential recommendation models, creating the SdifRec model.
We also propose an extended version of SdifRec called con-SdifRec, which utilizes user clustering information as a guiding condition.
- Score: 49.458914600467324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequential recommendation has attracted increasing attention due to its ability to accurately capture the dynamic changes in user interests. We have noticed that generative models, especially diffusion models, which have achieved significant results in fields like image and audio, hold considerable promise in the field of sequential recommendation. However, existing sequential recommendation methods based on diffusion models are constrained by a prior distribution limited to Gaussian distribution, hindering the possibility of introducing user-specific information for each recommendation and leading to information loss. To address these issues, we introduce the Schr\"odinger Bridge into diffusion-based sequential recommendation models, creating the SdifRec model. This allows us to replace the Gaussian prior of the diffusion model with the user's current state, directly modeling the process from a user's current state to the target recommendation. Additionally, to better utilize collaborative information in recommendations, we propose an extended version of SdifRec called con-SdifRec, which utilizes user clustering information as a guiding condition to further enhance the posterior distribution. Finally, extensive experiments on multiple public benchmark datasets have demonstrated the effectiveness of SdifRec and con-SdifRec through comparison with several state-of-the-art methods. Further in-depth analysis has validated their efficiency and robustness.
Related papers
- Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior.
We revisit SR from a novel information-theoretic perspective and find that sequential modeling methods fail to adequately capture randomness and unpredictability of user behavior.
Inspired by fuzzy information processing theory, this paper introduces the fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests.
arXiv Detail & Related papers (2024-10-31T14:52:01Z) - Generative Diffusion Models for Sequential Recommendations [7.948486055890262]
Generative models such as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) have shown promise in sequential recommendation tasks.
This research introduces enhancements to the DiffuRec architecture to improve robustness and incorporates a cross-attention mechanism in the Approximator to better capture relevant user-item interactions.
arXiv Detail & Related papers (2024-10-25T09:39:05Z) - Preference Diffusion for Recommendation [50.8692409346126]
We propose PreferDiff, a tailored optimization objective for DM-based recommenders.
PreferDiff transforms BPR into a log-likelihood ranking objective to better capture user preferences.
It is the first personalized ranking loss designed specifically for DM-based recommenders.
arXiv Detail & Related papers (2024-10-17T01:02:04Z) - Incorporating Classifier-Free Guidance in Diffusion Model-Based Recommendation [0.0]
Diffusion is a new approach to generative AI that improves on previous generative AI approaches.
We incorporate diffusion in a recommender system that mirrors the sequence users take when browsing and rating items.
arXiv Detail & Related papers (2024-09-16T17:27:27Z) - Sequential Recommendation via Adaptive Robust Attention with Multi-dimensional Embeddings [7.207685588038045]
Sequential recommendation models have achieved state-of-the-art performance using self-attention mechanism.
Moving beyond only using item ID and positional embeddings leads to a significant accuracy boost when predicting the next item.
We introduce a mix-attention mechanism with a layer-wise noise injection (LNI) regularization to improve the model's robustness and generalization.
arXiv Detail & Related papers (2024-09-08T08:27:22Z) - Diffusion-based Contrastive Learning for Sequential Recommendation [6.3482831836623355]
We propose a Context-aware Diffusion-based Contrastive Learning for Sequential Recommendation, named CaDiRec.
CaDiRec employs a context-aware diffusion model to generate alternative items for the given positions within a sequence.
We train the entire framework in an end-to-end manner, with shared item embeddings between the diffusion model and the recommendation model.
arXiv Detail & Related papers (2024-05-15T14:20:37Z) - Diffusion Model Alignment Using Direct Preference Optimization [103.2238655827797]
Diffusion-DPO is a method to align diffusion models to human preferences by directly optimizing on human comparison data.
We fine-tune the base model of the state-of-the-art Stable Diffusion XL (SDXL)-1.0 model with Diffusion-DPO.
We also develop a variant that uses AI feedback and has comparable performance to training on human preferences.
arXiv Detail & Related papers (2023-11-21T15:24:05Z) - Diffusion Augmentation for Sequential Recommendation [47.43402785097255]
We propose a Diffusion Augmentation for Sequential Recommendation (DiffuASR) for a higher quality generation.
The augmented dataset by DiffuASR can be used to train the sequential recommendation models directly, free from complex training procedures.
We conduct extensive experiments on three real-world datasets with three sequential recommendation models.
arXiv Detail & Related papers (2023-09-22T13:31:34Z) - RecFusion: A Binomial Diffusion Process for 1D Data for Recommendation [48.77168472848952]
We propose RecFusion, which comprises a set of diffusion models for recommendation.
We formulate diffusion on a 1D vector and propose binomial diffusion, which explicitly models binary user-item interactions with a Bernoulli process.
Our proposed diffusion models have implications beyond recommendation systems, such as in the medical domain with MRI and CT scans.
arXiv Detail & Related papers (2023-06-15T08:39:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.