Neuro-Inspired Information-Theoretic Hierarchical Perception for Multimodal Learning
- URL: http://arxiv.org/abs/2404.09403v2
- Date: Mon, 22 Apr 2024 20:50:53 GMT
- Title: Neuro-Inspired Information-Theoretic Hierarchical Perception for Multimodal Learning
- Authors: Xiongye Xiao, Gengshuo Liu, Gaurav Gupta, Defu Cao, Shixuan Li, Yaxing Li, Tianqing Fang, Mingxi Cheng, Paul Bogdan,
- Abstract summary: We develop the Information-Theoretic Hierarchical Perception (ITHP) model, which utilizes the concept of information bottleneck.
We show that ITHP consistently distills crucial information in multimodal learning scenarios, outperforming state-of-the-art benchmarks.
- Score: 16.8379583872582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrating and processing information from various sources or modalities are critical for obtaining a comprehensive and accurate perception of the real world in autonomous systems and cyber-physical systems. Drawing inspiration from neuroscience, we develop the Information-Theoretic Hierarchical Perception (ITHP) model, which utilizes the concept of information bottleneck. Different from most traditional fusion models that incorporate all modalities identically in neural networks, our model designates a prime modality and regards the remaining modalities as detectors in the information pathway, serving to distill the flow of information. Our proposed perception model focuses on constructing an effective and compact information flow by achieving a balance between the minimization of mutual information between the latent state and the input modal state, and the maximization of mutual information between the latent states and the remaining modal states. This approach leads to compact latent state representations that retain relevant information while minimizing redundancy, thereby substantially enhancing the performance of multimodal representation learning. Experimental evaluations on the MUStARD, CMU-MOSI, and CMU-MOSEI datasets demonstrate that our model consistently distills crucial information in multimodal learning scenarios, outperforming state-of-the-art benchmarks. Remarkably, on the CMU-MOSI dataset, ITHP surpasses human-level performance in the multimodal sentiment binary classification task across all evaluation metrics (i.e., Binary Accuracy, F1 Score, Mean Absolute Error, and Pearson Correlation).
Related papers
- An Information Criterion for Controlled Disentanglement of Multimodal Data [39.601584166020274]
Multimodal representation learning seeks to relate and decompose information inherent in multiple modalities.
Disentangled Self-Supervised Learning (DisentangledSSL) is a novel self-supervised approach for learning disentangled representations.
arXiv Detail & Related papers (2024-10-31T14:57:31Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - Discovering Common Information in Multi-view Data [35.37807004353416]
We introduce an innovative and mathematically rigorous definition for computing common information from multi-view data.
We develop a novel supervised multi-view learning framework to capture both common and unique information.
arXiv Detail & Related papers (2024-06-21T10:47:06Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - Balanced Multi-modal Federated Learning via Cross-Modal Infiltration [19.513099949266156]
Federated learning (FL) underpins advancements in privacy-preserving distributed computing.
We propose a novel Cross-Modal Infiltration Federated Learning (FedCMI) framework.
arXiv Detail & Related papers (2023-12-31T05:50:15Z) - Neuro-Inspired Hierarchical Multimodal Learning [16.8379583872582]
We develop the Information-Theoretic Hierarchical Perception (ITHP) model, which utilizes the concept of information bottleneck.
Our model designates the prime modality as input, while the remaining modalities act as detectors in the information pathway.
Our model consistently distills crucial information in multimodal learning scenarios, outperforming state-of-the-art benchmarks.
arXiv Detail & Related papers (2023-09-27T05:50:05Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - How to Sense the World: Leveraging Hierarchy in Multimodal Perception
for Robust Reinforcement Learning Agents [9.840104333194663]
We argue for hierarchy in the design of representation models and contribute with a novel multimodal representation model, MUSE.
MUSE is the sensory representation model of deep reinforcement learning agents provided with multimodal observations in Atari games.
We perform a comparative study over different designs of reinforcement learning agents, showing that MUSE allows agents to perform tasks under incomplete perceptual experience with minimal performance loss.
arXiv Detail & Related papers (2021-10-07T16:35:23Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.