State- and context-dependent robotic manipulation and grasping via uncertainty-aware imitation learning
- URL: http://arxiv.org/abs/2410.24035v1
- Date: Thu, 31 Oct 2024 15:32:32 GMT
- Title: State- and context-dependent robotic manipulation and grasping via uncertainty-aware imitation learning
- Authors: Tim R. Winter, Ashok M. Sundaram, Werner Friedl, Maximo A. Roa, Freek Stulp, João Silvério,
- Abstract summary: We introduce an LfD approach to acquire context-dependent grasping and manipulation strategies.
We propose a state-dependent approach that automatically returns to demonstrations, avoiding unpredictable behavior.
The approach is evaluated against the LASA handwriting dataset and on a real 7-DoF robot.
- Score: 9.369039142989875
- License:
- Abstract: Generating context-adaptive manipulation and grasping actions is a challenging problem in robotics. Classical planning and control algorithms tend to be inflexible with regard to parameterization by external variables such as object shapes. In contrast, Learning from Demonstration (LfD) approaches, due to their nature as function approximators, allow for introducing external variables to modulate policies in response to the environment. In this paper, we utilize this property by introducing an LfD approach to acquire context-dependent grasping and manipulation strategies. We treat the problem as a kernel-based function approximation, where the kernel inputs include generic context variables describing task-dependent parameters such as the object shape. We build on existing work on policy fusion with uncertainty quantification to propose a state-dependent approach that automatically returns to demonstrations, avoiding unpredictable behavior while smoothly adapting to context changes. The approach is evaluated against the LASA handwriting dataset and on a real 7-DoF robot in two scenarios: adaptation to slippage while grasping and manipulating a deformable food item.
Related papers
- HAAP: Vision-context Hierarchical Attention Autoregressive with Adaptive Permutation for Scene Text Recognition [17.412985505938508]
Internal Language Model (LM)-based methods use permutation language modeling (PLM) to solve the error correction caused by conditional independence in external LM-based methods.
This paper proposes the Hierarchical Attention autoregressive Model with Adaptive Permutation (HAAP) to enhance the location-context-image interaction capability.
arXiv Detail & Related papers (2024-05-15T06:41:43Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
arXiv Detail & Related papers (2023-10-26T21:28:23Z) - Integrating LLMs and Decision Transformers for Language Grounded
Generative Quality-Diversity [0.0]
Quality-Diversity is a branch of optimization that is often applied to problems from the Reinforcement Learning and control domains.
We propose a Large Language Model to augment the repertoire with natural language descriptions of trajectories.
We also propose an LLM-based approach to evaluating the performance of such generative agents.
arXiv Detail & Related papers (2023-08-25T10:00:06Z) - On the Forward Invariance of Neural ODEs [92.07281135902922]
We propose a new method to ensure neural ordinary differential equations (ODEs) satisfy output specifications.
Our approach uses a class of control barrier functions to transform output specifications into constraints on the parameters and inputs of the learning system.
arXiv Detail & Related papers (2022-10-10T15:18:28Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to discrepancy between source and target environments.
We propose a novel model-free actor-critic algorithm to learn robust policies without modeling the disturbance in advance.
Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
arXiv Detail & Related papers (2021-12-20T13:13:05Z) - Robust Value Iteration for Continuous Control Tasks [99.00362538261972]
When transferring a control policy from simulation to a physical system, the policy needs to be robust to variations in the dynamics to perform well.
We present Robust Fitted Value Iteration, which uses dynamic programming to compute the optimal value function on the compact state domain.
We show that robust value is more robust compared to deep reinforcement learning algorithm and the non-robust version of the algorithm.
arXiv Detail & Related papers (2021-05-25T19:48:35Z) - Composable Learning with Sparse Kernel Representations [110.19179439773578]
We present a reinforcement learning algorithm for learning sparse non-parametric controllers in a Reproducing Kernel Hilbert Space.
We improve the sample complexity of this approach by imposing a structure of the state-action function through a normalized advantage function.
We demonstrate the performance of this algorithm on learning obstacle-avoidance policies in multiple simulations of a robot equipped with a laser scanner while navigating in a 2D environment.
arXiv Detail & Related papers (2021-03-26T13:58:23Z) - Explore the Context: Optimal Data Collection for Context-Conditional Dynamics Models [7.766117084613689]
We learn dynamics models for parametrized families of dynamical systems with varying properties.
We compute an action sequence which, for a limited number of environment interactions, optimally explores the given system.
We demonstrate the effectiveness of our method for exploration on a non-linear toy-problem and two well-known reinforcement learning environments.
arXiv Detail & Related papers (2021-02-22T22:52:39Z) - Strictly Batch Imitation Learning by Energy-based Distribution Matching [104.33286163090179]
Consider learning a policy purely on the basis of demonstrated behavior -- that is, with no access to reinforcement signals, no knowledge of transition dynamics, and no further interaction with the environment.
One solution is simply to retrofit existing algorithms for apprenticeship learning to work in the offline setting.
But such an approach leans heavily on off-policy evaluation or offline model estimation, and can be indirect and inefficient.
We argue that a good solution should be able to explicitly parameterize a policy, implicitly learn from rollout dynamics, and operate in an entirely offline fashion.
arXiv Detail & Related papers (2020-06-25T03:27:59Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.