Dynamical similarity analysis can identify compositional dynamics developing in RNNs
- URL: http://arxiv.org/abs/2410.24070v4
- Date: Sat, 21 Dec 2024 17:53:26 GMT
- Title: Dynamical similarity analysis can identify compositional dynamics developing in RNNs
- Authors: Quentin Guilhot, Michał Wójcik, Jascha Achterberg, Rui Ponte Costa,
- Abstract summary: compositional learning in neural networks (RNNs) allows us to build a test case for dynamical representation alignment metrics.
We show that the new Dynamical Similarity Analysis (DSA) is more noise robust and identifies behaviorally relevant representations more reliably than prior metrics.
- Score: 3.037387520023979
- License:
- Abstract: Methods for analyzing representations in neural systems have become a popular tool in both neuroscience and mechanistic interpretability. Having measures to compare how similar activations of neurons are across conditions, architectures, and species, gives us a scalable way of learning how information is transformed within different neural networks. In contrast to this trend, recent investigations have revealed how some metrics can respond to spurious signals and hence give misleading results. To identify the most reliable metric and understand how measures could be improved, it is going to be important to identify specific test cases which can serve as benchmarks. Here we propose that the phenomena of compositional learning in recurrent neural networks (RNNs) allows us to build a test case for dynamical representation alignment metrics. By implementing this case, we show it enables us to test whether metrics can identify representations which gradually develop throughout learning and probe whether representations identified by metrics are relevant to computations executed by networks. By building both an attractor- and RNN-based test case, we show that the new Dynamical Similarity Analysis (DSA) is more noise robust and identifies behaviorally relevant representations more reliably than prior metrics (Procrustes, CKA). We also show how test cases can be used beyond evaluating metrics to study new architectures. Specifically, results from applying DSA to modern (Mamba) state space models, suggest that, in contrast to RNNs, these models may not exhibit changes to their recurrent dynamics due to their expressiveness. Overall, by developing test cases, we show DSA's exceptional ability to detect compositional dynamical motifs, thereby enhancing our understanding of how computations unfold in RNNs.
Related papers
- Invariants for neural automata [0.0]
We develop a formal framework for the investigation of symmetries and invariants of neural automata under different encodings.
Our work could be of substantial importance for related regression studies of real-world measurements with neurosymbolic processors.
arXiv Detail & Related papers (2023-02-04T11:40:40Z) - Can recurrent neural networks learn process model structure? [0.2580765958706854]
We introduce an evaluation framework that combines variant-based resampling and custom metrics for fitness, precision and generalization.
We confirm that LSTMs can struggle to learn process model structure, even with simplistic process data.
We also found that decreasing the amount of information seen by the LSTM during training, causes a sharp drop in generalization and precision scores.
arXiv Detail & Related papers (2022-12-13T08:40:01Z) - A Novel Explainable Out-of-Distribution Detection Approach for Spiking
Neural Networks [6.100274095771616]
This work presents a novel OoD detector that can identify whether test examples input to a Spiking Neural Network belong to the distribution of the data over which it was trained.
We characterize the internal activations of the hidden layers of the network in the form of spike count patterns.
A local explanation method is devised to produce attribution maps revealing which parts of the input instance push most towards the detection of an example as an OoD sample.
arXiv Detail & Related papers (2022-09-30T11:16:35Z) - Implicit N-grams Induced by Recurrence [10.053475465955794]
We present a study that shows there actually exist some explainable components that reside within the hidden states.
We evaluated such extracted explainable features from trained RNNs on downstream sentiment analysis tasks and found they could be used to model interesting linguistic phenomena.
arXiv Detail & Related papers (2022-05-05T15:53:46Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Recoding latent sentence representations -- Dynamic gradient-based
activation modification in RNNs [0.0]
In RNNs, encoding information in a suboptimal way can impact the quality of representations based on later elements in the sequence.
I propose an augmentation to standard RNNs in form of a gradient-based correction mechanism.
I conduct different experiments in the context of language modeling, where the impact of using such a mechanism is examined in detail.
arXiv Detail & Related papers (2021-01-03T17:54:17Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks.
We propose Neural Additive Models (NAMs) which combine some of the expressivity of DNNs with the inherent intelligibility of generalized additive models.
NAMs learn a linear combination of neural networks that each attend to a single input feature.
arXiv Detail & Related papers (2020-04-29T01:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.