論文の概要: Benchmark Data Repositories for Better Benchmarking
- arxiv url: http://arxiv.org/abs/2410.24100v1
- Date: Thu, 31 Oct 2024 16:30:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:59:44.455418
- Title: Benchmark Data Repositories for Better Benchmarking
- Title(参考訳): ベンチマークデータリポジトリによるベンチマーク改善
- Authors: Rachel Longjohn, Markelle Kelly, Sameer Singh, Padhraic Smyth,
- Abstract要約: 機械学習の研究では、ベンチマークデータセットのパフォーマンスを通じてアルゴリズムを評価することが一般的である。
我々は、これらの$textitbenchmarkデータレポジトリの状況と、ベンチマークを改善する上で彼らが果たす役割を分析します。
- 参考スコア(独自算出の注目度): 26.15831504718431
- License:
- Abstract: In machine learning research, it is common to evaluate algorithms via their performance on standard benchmark datasets. While a growing body of work establishes guidelines for -- and levies criticisms at -- data and benchmarking practices in machine learning, comparatively less attention has been paid to the data repositories where these datasets are stored, documented, and shared. In this paper, we analyze the landscape of these $\textit{benchmark data repositories}$ and the role they can play in improving benchmarking. This role includes addressing issues with both datasets themselves (e.g., representational harms, construct validity) and the manner in which evaluation is carried out using such datasets (e.g., overemphasis on a few datasets and metrics, lack of reproducibility). To this end, we identify and discuss a set of considerations surrounding the design and use of benchmark data repositories, with a focus on improving benchmarking practices in machine learning.
- Abstract(参考訳): 機械学習の研究では、標準的なベンチマークデータセットのパフォーマンスを通じてアルゴリズムを評価することが一般的である。
増え続ける作業組織は、機械学習におけるデータとベンチマークのプラクティスに関する -- 批判のガイドラインを確立しつつ、これらのデータセットが保存され、ドキュメント化され、共有されるデータリポジトリには、比較的注意が払われていない。
本稿では、これらの$\textit{benchmark data repository}$とそのベンチマーク改善における役割について分析する。
この役割には、データセット自体(例:表現上の害、構成上の妥当性)と、そのようなデータセット(例:少数のデータセットとメトリクスの過度の強調、再現性の欠如)を使用して評価を行う方法の両方の問題に対処することが含まれる。
この目的のために、機械学習におけるベンチマークの実践を改善することに焦点を当て、ベンチマークデータレポジトリの設計と使用に関する一連の考慮事項を特定し、議論する。
関連論文リスト
- Benchmark Inflation: Revealing LLM Performance Gaps Using Retro-Holdouts [0.6282171844772422]
多くのLarge Language Models(LLM)のトレーニングデータは、テストデータによって汚染される。
公開ベンチマークスコアは必ずしもモデルプロパティを正確に評価するとは限らない。
論文 参考訳(メタデータ) (2024-10-11T20:46:56Z) - Do Text-to-Vis Benchmarks Test Real Use of Visualisations? [11.442971909006657]
本稿では,ベンチマークデータセットと公開リポジトリのコードを比較した実証的研究を通じて,ベンチマークが実世界の利用を反映しているかどうかを考察する。
その結果,実世界の実例と同一のチャート型,属性,行動の分布を評価できないという,大きなギャップがあることが判明した。
1つのデータセットは代表的であるが、実用的なエンドツーエンドベンチマークになるには広範囲な修正が必要である。
これは、ユーザの視覚的ニーズに本当に対処するシステムの開発をサポートするために、新しいベンチマークが必要であることを示している。
論文 参考訳(メタデータ) (2024-07-29T06:13:28Z) - Analyzing Dataset Annotation Quality Management in the Wild [63.07224587146207]
最先端モデルのトレーニングと評価に使用される一般的なデータセットでさえ、誤ったアノテーションやバイアス、アーティファクトの量は無視できない。
データセット作成プロジェクトに関するプラクティスやガイドラインは存在するが、品質管理の実施方法に関する大規模な分析はまだ行われていない。
論文 参考訳(メタデータ) (2023-07-16T21:22:40Z) - A Review of Benchmarks for Visual Defect Detection in the Manufacturing
Industry [63.52264764099532]
本稿では,既存のベンチマークを用いて,それらの特性とユースケースを比較し,公開する。
産業メトリクスの要求と試験手順についての研究は、研究されたベンチマークに提示され、適用されます。
論文 参考訳(メタデータ) (2023-05-05T07:44:23Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerfは、MLデータセットとデータ中心アルゴリズムを評価するための、コミュニティ主導のベンチマークスイートである。
私たちは、この反復的な開発をサポートするために、複数の課題を抱えたオープンなオンラインプラットフォームを提供しています。
ベンチマーク、オンライン評価プラットフォーム、ベースライン実装はオープンソースである。
論文 参考訳(メタデータ) (2022-07-20T17:47:54Z) - GEMv2: Multilingual NLG Benchmarking in a Single Line of Code [161.1761414080574]
Generation, Evaluation, and Metrics Benchmarkは、データセット、モデル、メトリック開発者のためのモジュラーインフラストラクチャを提供する。
GEMv2は51言語で40のドキュメントデータセットをサポートする。
すべてのデータセットのモデルはオンラインで評価でき、インタラクティブなデータカード作成とレンダリングツールによって、生きたベンチマークに新しいデータセットを簡単に追加できます。
論文 参考訳(メタデータ) (2022-06-22T17:52:30Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
もっとも単純な設定であっても、無知性仮定に基づく推定は誤解を招く可能性があることを示す。
異種処理効果評価のための機械学習ベンチマークデータセットを2つ検討した。
ベンチマークデータセットの固有の特性が、他のものよりもいくつかのアルゴリズムを好んでいる点を強調します。
論文 参考訳(メタデータ) (2021-07-28T13:21:27Z) - OPTION: OPTImization Algorithm Benchmarking ONtology [4.060078409841919]
OPTION (OPTImization algorithm benchmarking ONtology) は、ベンチマークアルゴリズムのための意味的にリッチでマシン可読なデータモデルである。
私たちのオントロジーは、ベンチマークプロセスに関わるコアエンティティのセマンティックアノテーションに必要な語彙を提供します。
また、自動データ統合、相互運用性の改善、強力なクエリ機能、推論のための手段も提供する。
論文 参考訳(メタデータ) (2021-04-24T06:11:30Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
本研究では,人口変動に対するモデルのロバスト性を評価する手法を開発した。
既存のデータセットの基盤となるクラス構造を利用して、トレーニングとテストの分散を構成するデータサブポピュレーションを制御する。
この手法をImageNetデータセットに適用し、様々な粒度のサブポピュレーションシフトベンチマークスイートを作成する。
論文 参考訳(メタデータ) (2020-08-11T17:04:47Z) - Bringing the People Back In: Contesting Benchmark Machine Learning
Datasets [11.00769651520502]
機械学習データの系譜である研究プログラムを概説し、これらのデータセットの作成方法と理由について検討する。
機械学習におけるベンチマークデータセットを基盤として運用する方法を解説し、これらのデータセットについて4つの研究課題を提起する。
論文 参考訳(メタデータ) (2020-07-14T23:22:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。