Sound certification of memory-bounded quantum computers
- URL: http://arxiv.org/abs/2411.04215v2
- Date: Sun, 08 Jun 2025 15:01:09 GMT
- Title: Sound certification of memory-bounded quantum computers
- Authors: Jan Nöller, Nikolai Miklin, Martin Kliesch, Mariami Gachechiladze,
- Abstract summary: We introduce an approach, which we call quantum system quizzing, for the certification of quantum gates in a practical server-user scenario.<n> Importantly, this approach does not require trusted state preparation and measurement and is thus inherently free from the associated systematic errors.<n>A major technical challenge that we are first to resolve in the memory-bounded single-device setup is recovering the tensor product structure of a multi-qubit system.
- Score: 0.1874930567916036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of quantum hardware calls for the development of reliable methods to certify its correct functioning. However, existing certification tests often fall short: they either rely on flawless state preparation and measurement or lack soundness guarantees, meaning that they do not rule out incorrect implementations of the target operations by a quantum device. We introduce an approach, which we call quantum system quizzing, for the certification of quantum gates in a practical server-user scenario, where a classical user tests the results of quantum computations performed by a quantum server. Importantly, this approach does not require trusted state preparation and measurement and is thus inherently free from the associated systematic errors. For a wide range of relevant gate sets, including a universal one, we prove our certification protocol to be sound, i.e., it rejects any quantum model other than the targeted one, assuming a bound on the total memory of the quantum computer. A major technical challenge that we are first to resolve in the memory-bounded single-device setup is recovering the tensor product structure of a multi-qubit system. Our protocol is platform-agnostic, introducing a new paradigm for benchmarking diverse quantum architectures.
Related papers
- Quantum Computer Fingerprinting using Error Syndromes [2.680132607018545]
We propose a strategy to leverage the byproducts of quantum error correction (QEC) to verify hardware identity and authenticate quantum computations for free''<n>By treating syndrome measurements as a source of metadata, we embed verification seamlessly into standard QEC protocols.<n>We validate our approach using multiple error-correcting codes, quantum states, and circuit compilation strategies on several generations of IBM quantum computers.
arXiv Detail & Related papers (2025-06-19T21:23:08Z) - On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit [0.5497663232622965]
We present and experimentally demonstrate a novel approach to verification and benchmarking of quantum computing.<n>Unlike previous information-theoretically secure verification protocols, our approach is implemented entirely on-chip.<n>Our results pave the way for more accessible and efficient verification and benchmarking strategies in near-term quantum devices.
arXiv Detail & Related papers (2024-10-31T16:54:41Z) - Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
A proof of quantumness is an efficiently verifiable interactive test that an efficient quantum computer can pass.
Existing single-round protocols require large quantum circuits, whereas multi-round ones use smaller circuits but require experimentally challenging mid-circuit measurements.
We construct efficient single-round proofs of quantumness based on existing knowledge assumptions.
arXiv Detail & Related papers (2024-05-24T17:33:10Z) - Classical certification of quantum gates under the dimension assumption [0.1874930567916036]
We introduce a certification method for quantum gates tailored for a practical server-user scenario.<n>For single-qubit gates, including those that form a universal set for single-qubit quantum computation, we demonstrate that our approach offers soundness guarantees.
arXiv Detail & Related papers (2024-01-30T13:40:39Z) - Limitations of measure-first protocols in quantum machine learning [2.209921757303168]
We study a natural supervised learning setting where quantum states constitute data points, and the labels stem from an unknown measurement.
We show that there exist problems that can be efficiently learned by fully-quantum protocols but which require exponential resources for measure-first protocols.
Our result underscores the role of quantum data processing in machine learning and highlights scenarios where quantum advantages appear.
arXiv Detail & Related papers (2023-11-21T14:03:29Z) - Towards the device-independent certification of a quantum memory [0.0]
We develop efficient certification methods for quantum memories.
Considering a device-independent approach, we develop a robust self-testing method for quantum memories.
More generally, our methods apply for the characterisation of any device implementing a qubit identity quantum channel.
arXiv Detail & Related papers (2023-04-20T15:46:40Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Testing quantum computers with the protocol of quantum state matching [0.0]
The presence of noise in quantum computers hinders their effective operation.
We suggest the application of the so-called quantum state matching protocol for testing purposes.
For systematically varied inputs we find that the device with the smaller quantum volume performs better on our tests than the one with larger quantum volume.
arXiv Detail & Related papers (2022-10-18T08:25:34Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Mitigating errors by quantum verification and post-selection [0.0]
We present a technique for quantum error mitigation based on quantum verification, the so-called accreditation protocol, together with post-selection.
We discuss the sample complexity of our procedure and provide rigorous guarantees of errors being mitigated under some realistic assumptions on the noise.
Our technique also allows for time dependant behaviours, as we allow for the output states to be different between different runs of the accreditation protocol.
arXiv Detail & Related papers (2021-09-29T10:29:39Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z) - Self-testing of a single quantum device under computational assumptions [7.716156977428555]
Self-testing is a method to characterise an arbitrary quantum system based only on its classical input-output correlations.
We replace the setting of multiple non-communicating parties, which is difficult to enforce in practice, by a single computationally bounded party.
arXiv Detail & Related papers (2020-01-24T19:00:15Z) - Experimental characterisation of unsharp qubit observables and
sequential measurement incompatibility via quantum random access codes [0.0]
We report an experimental implementation of unsharp qubit measurements in a sequential communication protocol.
The protocol involves three parties; the first party prepares a qubit system, the second party performs operations which return a classical and quantum outcome, and the latter is measured by the third party.
arXiv Detail & Related papers (2020-01-14T13:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.