論文の概要: Approaches to human activity recognition via passive radar
- arxiv url: http://arxiv.org/abs/2410.24166v1
- Date: Thu, 31 Oct 2024 17:28:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:00:55.047619
- Title: Approaches to human activity recognition via passive radar
- Title(参考訳): 受動レーダによる人間の活動認識へのアプローチ
- Authors: Christian Bresciani, Federico Cerutti, Marco Cominelli,
- Abstract要約: この論文は、非侵入的Wi-Fiチャネル状態情報(CSI)データに着目した受動レーダを用いた人活動認識(HAR)の新しい手法を探求する。
本研究では、スパイキングニューラルネットワーク(SNN)を用いたCSIの非侵入性を利用して、人間の動きによる信号の変動を解釈する。
- 参考スコア(独自算出の注目度): 4.2261749429617534
- License:
- Abstract: The thesis explores novel methods for Human Activity Recognition (HAR) using passive radar with a focus on non-intrusive Wi-Fi Channel State Information (CSI) data. Traditional HAR approaches often use invasive sensors like cameras or wearables, raising privacy issues. This study leverages the non-intrusive nature of CSI, using Spiking Neural Networks (SNN) to interpret signal variations caused by human movements. These networks, integrated with symbolic reasoning frameworks such as DeepProbLog, enhance the adaptability and interpretability of HAR systems. SNNs offer reduced power consumption, ideal for privacy-sensitive applications. Experimental results demonstrate SNN-based neurosymbolic models achieve high accuracy making them a promising alternative for HAR across various domains.
- Abstract(参考訳): この論文は、非侵入的Wi-Fiチャネル状態情報(CSI)データに着目した受動レーダを用いた人活動認識(HAR)の新しい手法を探求する。
従来のHARアプローチは、しばしばカメラやウェアラブルのような侵入センサーを使用し、プライバシー上の問題を提起する。
本研究では、スパイキングニューラルネットワーク(SNN)を用いたCSIの非侵入性を利用して、人間の動きによる信号の変動を解釈する。
これらのネットワークはDeepProbLogのようなシンボリック推論フレームワークと統合され、HARシステムの適応性と解釈性を高める。
SNNは、プライバシに敏感なアプリケーションに理想的な、消費電力の削減を提供する。
実験により,SNNを用いたニューロシンボリックモデルにより高い精度が得られ,様々な領域にわたるHARの代替となる可能性が示された。
関連論文リスト
- Neuro-Symbolic Fusion of Wi-Fi Sensing Data for Passive Radar with Inter-Modal Knowledge Transfer [10.388561519507471]
本稿では,Wi-FiセンシングのためのニューロシンボリックアーキテクチャであるDeepProbHARを紹介する。
これは、Wi-Fi信号が脚や腕の動きなどの単純な動きと区別できるという最初の証拠を提供する。
DeepProbHARは、人間の活動認識における最先端技術に匹敵する結果を達成している。
論文 参考訳(メタデータ) (2024-07-01T08:43:27Z) - Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks [0.25163931116642785]
GAN(Generative Adversarial Networks)の統合によるNIDSの性能向上のための新しいアプローチを提案する。
GANは、現実世界のネットワークの振る舞いを忠実に模倣する合成ネットワークトラフィックデータを生成する。
NIDSへのGANの統合は,訓練データに制限のある攻撃に対する侵入検知性能の向上につながる可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-11T04:01:15Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - Know Thy Neighbors: A Graph Based Approach for Effective Sensor-Based
Human Activity Recognition in Smart Homes [0.0]
スマートホームにおけるヒューマンアクティビティ認識(HAR)のためのグラフ誘導ニューラルネットワーク手法を提案する。
スマートホームにおけるセンサネットワークを表す,より表現力のあるグラフ構造を学習することで,これを実現する。
本手法は,アテンション機構の適用により,個別の入力センサ計測を特徴空間にマッピングする。
論文 参考訳(メタデータ) (2023-11-16T02:43:13Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Contactless Human Activity Recognition using Deep Learning with Flexible
and Scalable Software Define Radio [1.3106429146573144]
本研究では,環境センシングの新たな手法として,Wi-Fiチャネル状態情報(CSI)の利用について検討する。
これらの方法は、プライバシーを侵害する視覚ベースのシステムに必要な追加のハードウェアを避ける。
本研究では,Wi-Fi CSIベースのHARシステムを提案する。
論文 参考訳(メタデータ) (2023-04-18T10:20:14Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Deep Transfer Learning with Graph Neural Network for Sensor-Based Human
Activity Recognition [12.51766929898714]
我々は,センサに基づくHARタスクに対して,グラフに着想を得たディープラーニングアプローチを考案した。
本稿では,センサベースHARタスクに対するグラフ畳み込みニューラルネットワーク(ResGCNN)の多層構造について述べる。
PAMAP2およびmHealthデータセットの実験結果から,我々のResGCNNは行動の特徴を捉えるのに有効であることが示された。
論文 参考訳(メタデータ) (2022-03-14T07:57:32Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
スパイキングニューラルネットワーク(SNN)を用いた生時間パルスで直接物体認識問題に対処する手法を提案する。
各種データセットを用いて評価した結果,提案手法は最先端の手法に匹敵する性能を示しながら,優れた時間効率を実現している。
論文 参考訳(メタデータ) (2020-01-24T22:58:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。