論文の概要: Multi-Attribute Linguistic Tuning for Controlled Paraphrase Generation
- arxiv url: http://arxiv.org/abs/2410.24199v1
- Date: Thu, 31 Oct 2024 17:55:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:02:07.750291
- Title: Multi-Attribute Linguistic Tuning for Controlled Paraphrase Generation
- Title(参考訳): 制御されたパラフレーズ生成のための多属性言語チューニング
- Authors: Mohamed Elgaar, Hadi Amiri,
- Abstract要約: 本稿では,40の言語属性を正確に制御し,微調整するパラフレーズ生成手法を提案する。
本モデルは,入力元文と所望の言語属性を考慮したエンコーダ・デコーダアーキテクチャであり,所望の属性を満たすソースのパラフレーズを生成する。
- 参考スコア(独自算出の注目度): 14.763505073094779
- License:
- Abstract: We present a novel approach to paraphrase generation that enables precise control and fine-tuning of 40 linguistic attributes for English. Our model is an encoder-decoder architecture that takes as input a source sentence and desired linguistic attributes, and produces paraphrases of the source that satisfy the desired attributes. To guarantee high-quality outputs at inference time, our method is equipped with a quality control mechanism that gradually adjusts the embedding of linguistic attributes to find the nearest and most attainable configuration of desired attributes for paraphrase generation. We evaluate the effectiveness of our method by comparing it to recent controllable generation models. Experimental results demonstrate that the proposed model outperforms baselines in generating paraphrases that satisfy desired linguistic attributes.
- Abstract(参考訳): 本稿では,40の言語属性を正確に制御し,微調整するパラフレーズ生成手法を提案する。
本モデルは,入力元文と所望の言語属性を考慮したエンコーダ・デコーダアーキテクチャであり,所望の属性を満たすソースのパラフレーズを生成する。
提案手法は,推論時の高品質な出力を保証するため,言語属性の埋め込みを段階的に調整する品質制御機構を備えている。
提案手法の有効性を最近の制御可能な生成モデルと比較することにより評価する。
実験結果から,提案モデルは所望の言語特性を満たすパラフレーズを生成する上で,ベースラインよりも優れていた。
関連論文リスト
- Improving Open-Ended Text Generation via Adaptive Decoding [6.746656673563492]
本研究では、動的に言語モデルに適応的復号化を導入し、生成時に意味のある候補集合を同定する機構を提案する。
実験結果から,本手法は多様性と一貫性のバランスが良好であることが明らかとなった。
我々の手法は言語モデルの推論能力を向上させる可能性がある。
論文 参考訳(メタデータ) (2024-02-28T10:38:21Z) - Retrieval is Accurate Generation [99.24267226311157]
本稿では,支援文書の集合からコンテキスト認識句を選択する新しい手法を提案する。
本モデルでは,検索対象のベースラインの中で,最高の性能と低レイテンシを実現する。
論文 参考訳(メタデータ) (2024-02-27T14:16:19Z) - Personalized Text Generation with Fine-Grained Linguistic Control [9.668216418094316]
複数の言語的次元にまたがる微粒な属性の制御に焦点をあてる。
生成モデルを訓練するための新しいベンチマークを導入し、パーソナライズされたテキストを生成する能力を評価する。
論文 参考訳(メタデータ) (2024-02-07T14:41:08Z) - HanoiT: Enhancing Context-aware Translation via Selective Context [95.93730812799798]
コンテキスト対応ニューラルネットワーク翻訳は、文書レベルのコンテキストを使用して翻訳品質を改善することを目的としている。
無関係または自明な単語は、いくつかのノイズをもたらし、モデルが現在の文と補助的な文脈の関係を学ぶのを邪魔する可能性がある。
そこで本稿では,階層的選択機構を備えたエンド・ツー・エンドのエンコーダ・デコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-17T12:07:13Z) - GanLM: Encoder-Decoder Pre-training with an Auxiliary Discriminator [114.8954615026781]
本稿では,補助判別器を導入して,エンコーダ・デコーダ事前学習のためのGANスタイルのモデルを提案する。
GanLMは2つのトレーニング済みの目標 – トークン検出の置き換えとトークン記述の置き換え – でトレーニングされている。
言語生成ベンチマークの実験では、強力な言語理解能力を持つ GanLM が、様々な強力な事前学習言語モデルより優れていることが示されている。
論文 参考訳(メタデータ) (2022-12-20T12:51:11Z) - BenchCLAMP: A Benchmark for Evaluating Language Models on Syntactic and
Semantic Parsing [55.058258437125524]
本稿では,制約付きLanguage Model Parsingを評価するベンチマークであるBenchCLAMPを紹介する。
APIを通じてのみ利用可能な2つのGPT-3変種を含む8つの言語モデルをベンチマークする。
実験により,エンコーダ-デコーダ事前学習言語モデルでは,モデル出力が有効であると制約された場合に,構文解析や意味解析の最先端手法を超えることができることがわかった。
論文 参考訳(メタデータ) (2022-06-21T18:34:11Z) - Attribute Alignment: Controlling Text Generation from Pre-trained
Language Models [46.19190007510232]
本論文では, テキスト生成を簡便かつ柔軟に制御する手法を提案する。
属性のトークンレベル分布を乱すように識別器を訓練する最近の取り組みとは対照的に、同じデータを用いてアライメント関数を学習し、トレーニング済みの非制御言語モデルを誘導し、元の言語モデルパラメータを変更することなく、ターゲット属性を持つテキストを生成する。
論文 参考訳(メタデータ) (2021-03-20T01:51:32Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Incorporating Stylistic Lexical Preferences in Generative Language
Models [10.62343151429147]
本稿では,著者の連続的な多次元語彙的嗜好を生成言語モデルに組み込むことにより,特定の著者属性を誘導する手法を提案する。
実験により,提案手法は,対象とする著者の語彙的スタイルと顕著に一致したテキストを生成することができることを示した。
論文 参考訳(メタデータ) (2020-10-22T09:24:05Z) - Exemplar-Controllable Paraphrasing and Translation using Bitext [57.92051459102902]
私たちは、バイリンガルテキスト(bitext)からのみ学ぶことができるように、以前の作業からモデルを適用する。
提案した1つのモデルでは、両言語で制御されたパラフレーズ生成と、両言語で制御された機械翻訳の4つのタスクを実行することができる。
論文 参考訳(メタデータ) (2020-10-12T17:02:50Z) - Control, Generate, Augment: A Scalable Framework for Multi-Attribute
Text Generation [22.70189685469752]
我々は条件付きVAEアーキテクチャであるCGAを導入し、テキストを制御、生成、拡張する。
アブレーション研究において,個々のモデル成分の値を示す。
生成した文の質,多様性,属性の制御を,一連の自動評価および人的評価を通じて示す。
論文 参考訳(メタデータ) (2020-04-30T17:31:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。