論文の概要: Teaching Embodied Reinforcement Learning Agents: Informativeness and Diversity of Language Use
- arxiv url: http://arxiv.org/abs/2410.24218v1
- Date: Thu, 31 Oct 2024 17:59:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:03:53.657895
- Title: Teaching Embodied Reinforcement Learning Agents: Informativeness and Diversity of Language Use
- Title(参考訳): エンボディード強化学習エージェントの指導--言語使用の表現性と多様性
- Authors: Jiajun Xi, Yinong He, Jianing Yang, Yinpei Dai, Joyce Chai,
- Abstract要約: 具体的エージェントは、人間の言語を活用して、学習タスクの明示的または暗黙的な知識を得る能力を持つことが望ましい。
タスク学習を容易にするために、リッチ言語をどのように組み込むかは明確ではない。
本稿では,強化学習における言語入力の種類について検討する。
- 参考スコア(独自算出の注目度): 16.425032085699698
- License:
- Abstract: In real-world scenarios, it is desirable for embodied agents to have the ability to leverage human language to gain explicit or implicit knowledge for learning tasks. Despite recent progress, most previous approaches adopt simple low-level instructions as language inputs, which may not reflect natural human communication. It's not clear how to incorporate rich language use to facilitate task learning. To address this question, this paper studies different types of language inputs in facilitating reinforcement learning (RL) embodied agents. More specifically, we examine how different levels of language informativeness (i.e., feedback on past behaviors and future guidance) and diversity (i.e., variation of language expressions) impact agent learning and inference. Our empirical results based on four RL benchmarks demonstrate that agents trained with diverse and informative language feedback can achieve enhanced generalization and fast adaptation to new tasks. These findings highlight the pivotal role of language use in teaching embodied agents new tasks in an open world. Project website: https://github.com/sled-group/Teachable_RL
- Abstract(参考訳): 実世界のシナリオでは、具体的エージェントが人間の言語を活用して、学習タスクの明示的あるいは暗黙的な知識を得る能力を持つことが望ましい。
近年の進歩にもかかわらず、従来のほとんどのアプローチでは言語入力として単純な低レベル命令を採用しており、これは人間の自然なコミュニケーションを反映していない可能性がある。
タスク学習を容易にするために、リッチ言語をどのように組み込むかは明確ではない。
そこで本研究では,強化学習(RL)具体化エージェントにおける言語入力の種類について検討する。
具体的には,言語情報性(過去の行動に対するフィードバック,今後の指導)と多様性(言語表現のバリエーション)がエージェント学習と推論にどのように影響するかを検討する。
4つのRLベンチマークに基づく実験結果から,多種多様な言語フィードバックを訓練したエージェントが,新たなタスクへの一般化と迅速な適応を達成できることが示された。
これらの知見は、オープンワールドにおけるエンボディエージェントの新たなタスクを教える上で、言語使用が果たす重要な役割を浮き彫りにした。
プロジェクトウェブサイト:https://github.com/sled-group/Teachable_RL
関連論文リスト
- Language Guided Skill Discovery [56.84356022198222]
言語ガイドスキル発見(LGSD)を導入し,スキル間の意味的多様性を最大化する。
LGSDはユーザープロンプトを入力として取り、セマンティックなスキルのセットを出力する。
本研究は,LGSDにより,単にプロンプトを変更するだけで,手足のロボットが平面上の異なるユーザ意図のエリアを訪問できることを実証する。
論文 参考訳(メタデータ) (2024-06-07T04:25:38Z) - Learning to Model the World with Language [100.76069091703505]
人間と対話し、世界で行動するためには、エージェントは人々が使用する言語の範囲を理解し、それを視覚の世界に関連付ける必要がある。
私たちのキーとなるアイデアは、エージェントが将来を予測するのに役立つ信号として、このような多様な言語を解釈すべきである、ということです。
我々は、将来のテキストや画像表現を予測するマルチモーダル世界モデルを学ぶエージェントであるDynalangでこれをインスタンス化する。
論文 参考訳(メタデータ) (2023-07-31T17:57:49Z) - Simple Embodied Language Learning as a Byproduct of Meta-Reinforcement
Learning [56.07190845063208]
具体的強化学習(RL)エージェントは、非言語タスクから間接的に言語を学習できるか?
エージェントが特定のオフィスを見つけることを目標とするオフィスナビゲーション環境を設計し、異なる建物(タスク)でオフィスロケーションが異なる。
我々は、RLエージェントが言語を間接的に学習できることを発見した。現在のメタRLアルゴリズムで訓練されたエージェントは、ホールドアウトレイアウトと言語フレーズでフロアプランを読むことに成功している。
論文 参考訳(メタデータ) (2023-06-14T09:48:48Z) - Transforming Human-Centered AI Collaboration: Redefining Embodied Agents
Capabilities through Interactive Grounded Language Instructions [23.318236094953072]
人間の知能の適応性は目覚ましいもので、新しいタスクやマルチモーダル環境に迅速に適応することができる。
研究コミュニティはインタラクティブな「身体的エージェント」の開発を積極的に進めている
これらのエージェントは、コミュニケーションが壊れたり、指示が不明確であったりした場合に、迅速にフィードバックをリクエストする能力を持っていなければならない。
論文 参考訳(メタデータ) (2023-05-18T07:51:33Z) - Communication Drives the Emergence of Language Universals in Neural
Agents: Evidence from the Word-order/Case-marking Trade-off [3.631024220680066]
ニューラルエージェント言語学習通信フレームワーク(NeLLCom)を提案する。
我々はエージェントに特定のバイアスをハードコーディングすることなく、新しいフレームワークでトレードオフを複製することに成功しました。
論文 参考訳(メタデータ) (2023-01-30T17:22:33Z) - On the cross-lingual transferability of multilingual prototypical models
across NLU tasks [2.44288434255221]
教師付きディープラーニングベースのアプローチはタスク指向のダイアログに適用され、限られたドメインや言語アプリケーションに有効であることが証明されている。
実際には、これらのアプローチはドメイン駆動設計とアンダーリソース言語の欠点に悩まされている。
本稿では,原型ニューラルネットワークと多言語トランスフォーマーモデルを用いた相乗的少数ショット学習の言語間変換可能性について検討する。
論文 参考訳(メタデータ) (2022-07-19T09:55:04Z) - Cross-lingual Lifelong Learning [53.06904052325966]
本稿では,言語間連続学習(CCL)の評価パラダイムを提案する。
マルチリンガルなシーケンシャルな学習を特に難しいものにするための洞察を提供する。
この分析の意味は、異なる言語間連続学習のデシダータを測り、バランスをとる方法のレシピを含む。
論文 参考訳(メタデータ) (2022-05-23T09:25:43Z) - LISA: Learning Interpretable Skill Abstractions from Language [85.20587800593293]
言語条件による実演から多種多様な解釈可能なスキルを学習できる階層型模倣学習フレームワークを提案する。
本手法は, 逐次的意思決定問題において, 言語に対するより自然な条件付け方法を示す。
論文 参考訳(メタデータ) (2022-02-28T19:43:24Z) - Information-Theoretic Probing for Linguistic Structure [74.04862204427944]
本稿では,相互情報を推定するための情報理論による探索運用手法を提案する。
我々は,NLP研究でしばしば不足している10の型的多様言語について評価した。
論文 参考訳(メタデータ) (2020-04-07T01:06:36Z) - Zero-Shot Cross-Lingual Transfer with Meta Learning [45.29398184889296]
英語以外の言語ではほとんど、あるいは全くデータがない場合に、複数の言語でのトレーニングモデルの設定を同時に検討する。
メタラーニングを用いて、この挑戦的な設定にアプローチできることが示される。
我々は、標準教師付きゼロショットのクロスランガルと、異なる自然言語理解タスクのための数ショットのクロスランガル設定を用いて実験を行った。
論文 参考訳(メタデータ) (2020-03-05T16:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。