論文の概要: A Perspective for Adapting Generalist AI to Specialized Medical AI Applications and Their Challenges
- arxiv url: http://arxiv.org/abs/2411.00024v2
- Date: Mon, 18 Nov 2024 18:41:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:31:04.600685
- Title: A Perspective for Adapting Generalist AI to Specialized Medical AI Applications and Their Challenges
- Title(参考訳): 医療用AI応用へのジェネリストAIの適用と課題
- Authors: Zifeng Wang, Hanyin Wang, Benjamin Danek, Ying Li, Christina Mack, Hoifung Poon, Yajuan Wang, Pranav Rajpurkar, Jimeng Sun,
- Abstract要約: 大規模言語モデル(LLM)の医療応用への統合は、医療業界で広く関心を集めている。
本稿では,LSMを利用した医療用AIアプリケーション構築の内的課題について論じる。
- 参考スコア(独自算出の注目度): 33.20745682286796
- License:
- Abstract: The integration of Large Language Models (LLMs) into medical applications has sparked widespread interest across the healthcare industry, from drug discovery and development to clinical decision support, assisting telemedicine, medical devices, and healthcare insurance applications. This perspective paper aims to discuss the inner workings of building LLM-powered medical AI applications and introduces a comprehensive framework for their development. We review existing literature and outline the unique challenges of applying LLMs in specialized medical contexts. Additionally, we introduce a three-step framework to organize medical LLM research activities: 1) Modeling: breaking down complex medical workflows into manageable steps for developing medical-specific models; 2) Optimization: optimizing the model performance with crafted prompts and integrating external knowledge and tools, and 3) System engineering: decomposing complex tasks into subtasks and leveraging human expertise for building medical AI applications. Furthermore, we offer a detailed use case playbook that describes various LLM-powered medical AI applications, such as optimizing clinical trial design, enhancing clinical decision support, and advancing medical imaging analysis. Finally, we discuss various challenges and considerations for building medical AI applications with LLMs, such as handling hallucination issues, data ownership and compliance, privacy, intellectual property considerations, compute cost, sustainability issues, and responsible AI requirements.
- Abstract(参考訳): 大規模言語モデル(LLM)の医療応用への統合は、医薬品の発見や開発、臨床決定支援、遠隔医療、医療機器、医療保険のアプリケーション支援など、医療業界で広く関心を集めている。
本稿では,LSMを利用した医療用AIアプリケーション構築の内部動作について議論し,その開発のための包括的枠組みを導入することを目的とする。
既存の文献を概観し、専門的な医学的文脈におけるLSMの適用に関するユニークな課題を概説する。
さらに、医学LLM研究活動の組織化のための3段階の枠組みも紹介する。
1) モデリング:複雑な医療ワークフローを医療特化モデルを開発するための管理可能なステップに分割すること。
2)最適化:手作りのプロンプトでモデルパフォーマンスを最適化し、外部の知識やツールを統合する。
3) システムエンジニアリング: 複雑なタスクをサブタスクに分解し、医療AIアプリケーションを構築するための人間の専門知識を活用する。
さらに、臨床治験設計の最適化、臨床意思決定支援の強化、医用画像解析の進歩など、LSMを利用した医療AI応用を詳述した詳細なユースケースプレイブックを提供する。
最後に、幻覚問題、データオーナシップとコンプライアンス、プライバシ、知的財産の考慮、計算コスト、持続可能性の問題、責任あるAI要件の処理など、LLMで医療AIアプリケーションを構築するためのさまざまな課題と考慮事項について論じる。
関連論文リスト
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - From Text to Multimodality: Exploring the Evolution and Impact of Large Language Models in Medical Practice [11.196196955468992]
大規模言語モデル(LLM)は、テキストベースのシステムからマルチモーダルプラットフォームへと急速に進化してきた。
医療におけるMLLMの現況を考察し,臨床診断支援,医用画像,患者エンゲージメント,研究の分野にまたがる応用を分析した。
論文 参考訳(メタデータ) (2024-09-14T02:35:29Z) - Clinical Insights: A Comprehensive Review of Language Models in Medicine [1.5020330976600738]
この研究は、LLMの基盤技術から、ドメイン固有モデルやマルチモーダル統合の最新の発展まで、その進化を辿っている。
本稿では、これらの技術が臨床効率を高めるための機会と、倫理、データプライバシ、実装の観点からそれらがもたらす課題について論じる。
論文 参考訳(メタデータ) (2024-08-21T15:59:33Z) - Large Language Models for Medicine: A Survey [31.720633684205424]
大規模言語モデル(LLM)は、デジタル経済のデジタルインテリジェンスにおける課題に対処するために開発された。
本稿では,医療用LLMの要件と応用について述べる。
論文 参考訳(メタデータ) (2024-05-20T02:32:26Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
大規模言語モデル (LLM) は、人間の言語を理解し、生成する能力のために大きな注目を集めている。
本総説は,医学におけるLSMの開発と展開について概説することを目的としている。
論文 参考訳(メタデータ) (2023-11-09T02:55:58Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
大規模言語モデル(LLM)は、人間のレベルの言語理解と推論を模倣する有望な能力を示している。
本稿では,医学におけるLSMの応用と意義について概説する。
論文 参考訳(メタデータ) (2023-11-03T13:51:36Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
大規模人工知能(AGI)モデルは、様々な汎用ドメインタスクにおいて前例のない成功を収めた。
これらのモデルは、医学分野固有の複雑さとユニークな特徴から生じる顕著な課題に直面している。
このレビューは、医療画像、医療などにおけるAGIの将来的な意味についての洞察を提供することを目的としている。
論文 参考訳(メタデータ) (2023-06-08T18:04:13Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。