論文の概要: Clinical Insights: A Comprehensive Review of Language Models in Medicine
- arxiv url: http://arxiv.org/abs/2408.11735v2
- Date: Sun, 1 Sep 2024 13:13:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 16:32:02.577407
- Title: Clinical Insights: A Comprehensive Review of Language Models in Medicine
- Title(参考訳): 臨床展望 : 医学における言語モデルの概要
- Authors: Nikita Neveditsin, Pawan Lingras, Vijay Mago,
- Abstract要約: この研究は、LLMの基盤技術から、ドメイン固有モデルやマルチモーダル統合の最新の発展まで、その進化を辿っている。
本稿では、これらの技術が臨床効率を高めるための機会と、倫理、データプライバシ、実装の観点からそれらがもたらす課題について論じる。
- 参考スコア(独自算出の注目度): 1.5020330976600738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides a detailed examination of the advancements and applications of large language models in the healthcare sector, with a particular emphasis on clinical applications. The study traces the evolution of LLMs from their foundational technologies to the latest developments in domain-specific models and multimodal integration. It explores the technical progression from encoder-based models requiring fine-tuning to sophisticated approaches that integrate textual, visual, and auditory data, thereby facilitating comprehensive AI solutions in healthcare. The paper discusses both the opportunities these technologies present for enhancing clinical efficiency and the challenges they pose in terms of ethics, data privacy, and implementation. Additionally, it critically evaluates the deployment strategies of LLMs, emphasizing the necessity of open-source models to ensure data privacy and adaptability within healthcare environments. Future research directions are proposed, focusing on empirical studies to evaluate the real-world efficacy of LLMs in healthcare and the development of open datasets for further research. This review aims to provide a comprehensive resource for both newcomers and multidisciplinary researchers interested in the intersection of AI and healthcare.
- Abstract(参考訳): 本稿では、医療分野における大規模言語モデルの進歩と応用について、特に臨床応用に焦点を当てて詳細に検討する。
この研究は、LLMの基盤技術から、ドメイン固有モデルやマルチモーダル統合の最新の発展まで、その進化を辿っている。
エンコーダベースのモデルから、テキストデータ、視覚データ、聴覚データを統合する高度なアプローチへの微調整を必要とし、医療における包括的なAIソリューションを促進する技術的進歩を探求する。
本稿では、これらの技術が臨床効率を高めるための機会と、倫理、データプライバシ、実装の観点からそれらがもたらす課題について論じる。
さらに、LLMのデプロイメント戦略を批判的に評価し、医療環境におけるデータのプライバシと適応性を保証するためのオープンソースモデルの必要性を強調している。
医療におけるLLMの現実的有効性を評価するための実証的研究と、さらなる研究のためのオープンデータセットの開発に焦点をあてて、今後の研究方向性を提案する。
このレビューは、AIと医療の交差点に関心を持つ新入生と学際研究者の両方に包括的なリソースを提供することを目的としている。
関連論文リスト
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - The Role of Language Models in Modern Healthcare: A Comprehensive Review [2.048226951354646]
医療における大規模言語モデル(LLM)の適用は注目されている。
本稿では,言語モデルの初期から現在までの軌跡を概観する。
論文 参考訳(メタデータ) (2024-09-25T12:15:15Z) - From Text to Multimodality: Exploring the Evolution and Impact of Large Language Models in Medical Practice [11.196196955468992]
大規模言語モデル(LLM)は、テキストベースのシステムからマルチモーダルプラットフォームへと急速に進化してきた。
医療におけるMLLMの現況を考察し,臨床診断支援,医用画像,患者エンゲージメント,研究の分野にまたがる応用を分析した。
論文 参考訳(メタデータ) (2024-09-14T02:35:29Z) - A Survey for Large Language Models in Biomedicine [31.719451674137844]
このレビューは、PubMed、Web of Science、arXivなどのデータベースから得られた484の出版物の分析に基づいている。
我々は、診断支援、薬物発見、パーソナライズドメディカル医療を含む幅広いバイオメディカル・タスクにおいて、ゼロショット学習におけるLLMの能力について検討する。
データプライバシの懸念、限定されたモデル解釈可能性、データセットの品質の問題、倫理など、LLMがバイオメディシック領域で直面する課題について論じる。
論文 参考訳(メタデータ) (2024-08-29T12:39:16Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions [31.04135502285516]
大規模言語モデル(LLM)は、人間レベルの言語の生成と理解に優れた能力があることから、大きな注目を集めている。
LLMは医療分野において革新的で強力なアドジャンクとして出現し、伝統的なプラクティスを変革し、医療サービス強化の新しい時代を告げている。
論文 参考訳(メタデータ) (2024-06-06T03:15:13Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
大規模言語モデル(LLM)は、人間のレベルの言語理解と推論を模倣する有望な能力を示している。
本稿では,医学におけるLSMの応用と意義について概説する。
論文 参考訳(メタデータ) (2023-11-03T13:51:36Z) - Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data
Generation with Large Language Models [48.07083163501746]
臨床自然言語処理には、ドメイン固有の課題に対処できる方法が必要である。
我々は,そのプロセスに知識を注入する,革新的で資源効率のよいアプローチであるClinGenを提案する。
7つのNLPタスクと16のデータセットを比較検討した結果,ClinGenはさまざまなタスクのパフォーマンスを継続的に向上させることがわかった。
論文 参考訳(メタデータ) (2023-11-01T04:37:28Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
医療におけるプライバシー保護機械学習(PPML)に関する最近の文献を概観する。
プライバシ保護トレーニングと推論・アズ・ア・サービスに重点を置いています。
このレビューの目的は、医療におけるプライベートかつ効率的なMLモデルの開発をガイドすることである。
論文 参考訳(メタデータ) (2023-03-27T19:20:51Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。