NeuroSym-BioCAT: Leveraging Neuro-Symbolic Methods for Biomedical Scholarly Document Categorization and Question Answering
- URL: http://arxiv.org/abs/2411.00041v1
- Date: Tue, 29 Oct 2024 14:45:12 GMT
- Title: NeuroSym-BioCAT: Leveraging Neuro-Symbolic Methods for Biomedical Scholarly Document Categorization and Question Answering
- Authors: Parvez Zamil, Gollam Rabby, Md. Sadekur Rahman, Sören Auer,
- Abstract summary: We introduce a novel approach that integrates an optimized topic modelling framework, OVB-LDA, with the BI-POP CMA-ES optimization technique for enhanced scholarly document abstract categorization.
We employ the distilled MiniLM model, fine-tuned on domain-specific data, for high-precision answer extraction.
- Score: 0.14999444543328289
- License:
- Abstract: The growing volume of biomedical scholarly document abstracts presents an increasing challenge in efficiently retrieving accurate and relevant information. To address this, we introduce a novel approach that integrates an optimized topic modelling framework, OVB-LDA, with the BI-POP CMA-ES optimization technique for enhanced scholarly document abstract categorization. Complementing this, we employ the distilled MiniLM model, fine-tuned on domain-specific data, for high-precision answer extraction. Our approach is evaluated across three configurations: scholarly document abstract retrieval, gold-standard scholarly documents abstract, and gold-standard snippets, consistently outperforming established methods such as RYGH and bio-answer finder. Notably, we demonstrate that extracting answers from scholarly documents abstracts alone can yield high accuracy, underscoring the sufficiency of abstracts for many biomedical queries. Despite its compact size, MiniLM exhibits competitive performance, challenging the prevailing notion that only large, resource-intensive models can handle such complex tasks. Our results, validated across various question types and evaluation batches, highlight the robustness and adaptability of our method in real-world biomedical applications. While our approach shows promise, we identify challenges in handling complex list-type questions and inconsistencies in evaluation metrics. Future work will focus on refining the topic model with more extensive domain-specific datasets, further optimizing MiniLM and utilizing large language models (LLM) to improve both precision and efficiency in biomedical question answering.
Related papers
- SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG)
Existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries.
We propose Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm.
arXiv Detail & Related papers (2024-06-17T06:48:31Z) - BiomedRAG: A Retrieval Augmented Large Language Model for Biomedicine [19.861178160437827]
Large Language Models (LLMs) have swiftly emerged as vital resources for different applications in the biomedical and healthcare domains.
textscBiomedRAG attains superior performance across 5 biomedical NLP tasks.
textscBiomedRAG outperforms other triple extraction systems with micro-F1 scores of 81.42 and 88.83 on GIT and ChemProt corpora, respectively.
arXiv Detail & Related papers (2024-05-01T12:01:39Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge [2.2814097119704058]
Large language models (LLMs) are transforming the way information is retrieved with vast amounts of knowledge being summarized and presented.
LLMs are prone to highlight the most frequently seen pieces of information from the training set and to neglect the rare ones.
We introduce a novel information-retrieval method that leverages a knowledge graph to downsample these clusters and mitigate the information overload problem.
arXiv Detail & Related papers (2024-02-19T18:31:11Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - High-throughput Biomedical Relation Extraction for Semi-Structured Web Articles Empowered by Large Language Models [1.9665865095034865]
We formulate the relation extraction task as binary classifications for large language models.
We designate the main title as the tail entity and explicitly incorporate it into the context.
Longer contents are sliced into text chunks, embedded, and retrieved with additional embedding models.
arXiv Detail & Related papers (2023-12-13T16:43:41Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - A systematic evaluation of large language models for biomedical natural language processing: benchmarks, baselines, and recommendations [22.668383945059762]
We present a systematic evaluation of four representative Large Language Models (LLMs) across 12 BioNLP datasets.
The evaluation is conducted under four settings: zero-shot, static few-shot, dynamic K-nearest few-shot, and fine-tuning.
We compare these models against state-of-the-art (SOTA) approaches that fine-tune (domain-specific) BERT or BART models.
arXiv Detail & Related papers (2023-05-10T13:40:06Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
We propose Biomedical Information Extraction, a hybrid neural network to extract relations from biomedical text and unstructured medical reports.
We evaluate our model on two major biomedical relationship extraction tasks, chemical-disease relation and chemical-protein interaction, and a cross-hospital pan-cancer pathology report corpus.
arXiv Detail & Related papers (2021-10-26T13:19:28Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.