論文の概要: The ISCSLP 2024 Conversational Voice Clone (CoVoC) Challenge: Tasks, Results and Findings
- arxiv url: http://arxiv.org/abs/2411.00064v1
- Date: Thu, 31 Oct 2024 09:39:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:54.687923
- Title: The ISCSLP 2024 Conversational Voice Clone (CoVoC) Challenge: Tasks, Results and Findings
- Title(参考訳): ISCSLP 2024 Conversational Voice Clone (CoVoC) Challenge: Tasks, Results and Findings
- Authors: Kangxiang Xia, Dake Guo, Jixun Yao, Liumeng Xue, Hanzhao Li, Shuai Wang, Zhao Guo, Lei Xie, Qingqing Zhang, Lei Luo, Minghui Dong, Peng Sun,
- Abstract要約: ISCSLP 2024 Conversational Voice Clone (CoVoC) Challengeは、ゼロショット発声音声クローンのベンチマークと進歩を目的としている。
本稿では,データ,トラック,提案システム,評価結果,結果について述べる。
- 参考スコア(独自算出の注目度): 18.994388357437924
- License:
- Abstract: The ISCSLP 2024 Conversational Voice Clone (CoVoC) Challenge aims to benchmark and advance zero-shot spontaneous style voice cloning, particularly focusing on generating spontaneous behaviors in conversational speech. The challenge comprises two tracks: an unconstrained track without limitation on data and model usage, and a constrained track only allowing the use of constrained open-source datasets. A 100-hour high-quality conversational speech dataset is also made available with the challenge. This paper details the data, tracks, submitted systems, evaluation results, and findings.
- Abstract(参考訳): ISCSLP 2024 Conversational Voice Clone (CoVoC) Challengeは、ゼロショット発声音声クローンのベンチマークと進歩を目的としており、特に会話音声における自然行動の生成に焦点を当てている。
課題は2つのトラックから成っている。データとモデルの使用を制限することなく制限なしのトラックと、制約付きオープンソースデータセットの使用のみを可能にする制限付きトラックだ。
100時間の高品質な会話音声データセットも、この課題で利用可能である。
本稿では,データ,トラック,提案システム,評価結果,結果について詳述する。
関連論文リスト
- Overview of AI-Debater 2023: The Challenges of Argument Generation Tasks [62.443665295250035]
第2023回中国影響コンピューティング会議(CCAC 2023)におけるAI-Debater 2023チャレンジの結果を提示する。
合計で32のチームがチャレンジに登録し、そこから11の応募をもらいました。
論文 参考訳(メタデータ) (2024-07-20T10:13:54Z) - The Second DISPLACE Challenge : DIarization of SPeaker and LAnguage in Conversational Environments [28.460119283649913]
データセットには158時間の音声が含まれており、教師なしと教師なしの両方の単一チャネルの遠距離記録で構成されている。
インドの5言語で実施されたASRトラックでは,12時間の近接場単チャンネル記録が提供された。
我々は,この第2版における課題の進展を強調するために,私たちのベースラインモデルとdisPLACE-2023の評価データに基づくチームのパフォーマンスを比較した。
論文 参考訳(メタデータ) (2024-06-13T17:32:32Z) - ICMC-ASR: The ICASSP 2024 In-Car Multi-Channel Automatic Speech
Recognition Challenge [94.13624830833314]
この課題は、新しいエネルギー車両内で記録された100時間以上のマルチチャネル音声データを収集する。
1位チームのUSTCiflytekはASRトラックで13.16%のCER、ASDRトラックで21.48%のcpCERを達成した。
論文 参考訳(メタデータ) (2024-01-07T12:51:42Z) - Perception Test 2023: A Summary of the First Challenge And Outcome [67.0525378209708]
最初のパーセプションテストは、IEEE/CVF International Conference on Computer Vision (ICCV) 2023と共に半日間のワークショップとして開催された。
目標は、最近提案されたPerception Testベンチマークで最先端のビデオモデルをベンチマークすることであった。
このレポートでは、タスク記述、メトリクス、ベースライン、結果について要約しています。
論文 参考訳(メタデータ) (2023-12-20T15:12:27Z) - Summary of the DISPLACE Challenge 2023 -- DIarization of SPeaker and
LAnguage in Conversational Environments [28.618333018398122]
複数の言語が小さな地理的近傍で話される多言語社会では、非公式な会話は言語が混在することが多い。
既存の音声技術は、音声データが複数の言語や話者との多様性に富んでいるような会話から情報を抽出するのに非効率である可能性がある。
DISPLACEチャレンジは、この挑戦的な状況下で話者と言語ダイアリゼーション技術の評価とベンチマークを行うためのオープンコールを構成する。
論文 参考訳(メタデータ) (2023-11-21T12:23:58Z) - SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented
Dialogue Agents [72.42049370297849]
SpokenWOZは音声TODのための大規模音声テキストデータセットである。
SpokenWOZでは、クロスターンスロットと推論スロット検出が新たな課題である。
論文 参考訳(メタデータ) (2023-05-22T13:47:51Z) - A Study on the Integration of Pipeline and E2E SLU systems for Spoken
Semantic Parsing toward STOP Quality Challenge [33.89616011003973]
本稿では,音声言語理解グランドチャレンジにおける品質トラック(トラック1)のための音声意味解析システムについて述べる。
Whisperのような強自動音声認識(ASR)モデルとBARTのような事前訓練言語モデル(LM)は、我々のSLUフレームワーク内で利用され、性能が向上する。
また,各モデルの出力レベルの組み合わせについて,精度80.8の精度で検討し,第1位を獲得した。
論文 参考訳(メタデータ) (2023-05-02T17:25:19Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
音声による質問応答では、システムは関連する音声書き起こしの中に連続したテキストスパンからの質問に答えるように設計されている。
本稿では,複雑な対話フローをモデル化することを目的とした音声対話型質問応答タスク(SCQA)を提案する。
本研究の目的は,音声記録に基づく対話型質問に対処するシステムを構築することであり,情報収集システムによる様々なモダリティからより多くの手がかりを提供する可能性を探ることである。
論文 参考訳(メタデータ) (2022-04-29T17:56:59Z) - Exploiting Unsupervised Data for Emotion Recognition in Conversations [76.01690906995286]
会話における感情認識(Emotion Recognition in Conversations:ERC)は、会話における話者の感情状態を予測することを目的としている。
ERCタスクの教師付きデータは限られている。
教師なし会話データを活用する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-02T13:28:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。