Label Noise: Ignorance Is Bliss
- URL: http://arxiv.org/abs/2411.00079v1
- Date: Thu, 31 Oct 2024 17:03:25 GMT
- Title: Label Noise: Ignorance Is Bliss
- Authors: Yilun Zhu, Jianxin Zhang, Aditya Gangrade, Clayton Scott,
- Abstract summary: We establish a new theoretical framework for learning under multi-class, instance-dependent label noise.
Our findings support the simple emphNoise Ignorant Empirical Risk Minimization (NI-ERM) principle, which minimizes empirical risk while ignoring label noise.
- Score: 20.341746708177055
- License:
- Abstract: We establish a new theoretical framework for learning under multi-class, instance-dependent label noise. This framework casts learning with label noise as a form of domain adaptation, in particular, domain adaptation under posterior drift. We introduce the concept of \emph{relative signal strength} (RSS), a pointwise measure that quantifies the transferability from noisy to clean posterior. Using RSS, we establish nearly matching upper and lower bounds on the excess risk. Our theoretical findings support the simple \emph{Noise Ignorant Empirical Risk Minimization (NI-ERM)} principle, which minimizes empirical risk while ignoring label noise. Finally, we translate this theoretical insight into practice: by using NI-ERM to fit a linear classifier on top of a self-supervised feature extractor, we achieve state-of-the-art performance on the CIFAR-N data challenge.
Related papers
- Robust Learning under Hybrid Noise [24.36707245704713]
We propose a novel unified learning framework called "Feature and Label Recovery" (FLR) to combat the hybrid noise from the perspective of data recovery.
arXiv Detail & Related papers (2024-07-04T16:13:25Z) - Feature Noise Boosts DNN Generalization under Label Noise [65.36889005555669]
The presence of label noise in the training data has a profound impact on the generalization of deep neural networks (DNNs)
In this study, we introduce and theoretically demonstrate a simple feature noise method, which directly adds noise to the features of training data.
arXiv Detail & Related papers (2023-08-03T08:31:31Z) - Label Noise: Correcting the Forward-Correction [0.0]
Training neural network classifiers on datasets with label noise poses a risk of overfitting them to the noisy labels.
We propose an approach to tackling overfitting caused by label noise.
Motivated by this observation, we propose imposing a lower bound on the training loss to mitigate overfitting.
arXiv Detail & Related papers (2023-07-24T19:41:19Z) - Binary Classification with Instance and Label Dependent Label Noise [4.061135251278187]
We show that learning with noisy samples is impossible without access to clean samples or strong assumptions on the distribution of the data.
Our findings suggest that learning solely with noisy samples is impossible without access to clean samples or strong assumptions on the distribution of the data.
arXiv Detail & Related papers (2023-06-06T04:47:44Z) - Enhancing Contrastive Learning with Noise-Guided Attack: Towards
Continual Relation Extraction in the Wild [57.468184469589744]
We develop a noise-resistant contrastive framework named as textbfNoise-guided textbfattack in textbfContrative textbfLearning(NaCL)
Compared to direct noise discarding or inaccessible noise relabeling, we present modifying the feature space to match the given noisy labels via attacking.
arXiv Detail & Related papers (2023-05-11T18:48:18Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Open-set Label Noise Can Improve Robustness Against Inherent Label Noise [27.885927200376386]
We show that open-set noisy labels can be non-toxic and even benefit the robustness against inherent noisy labels.
We propose a simple yet effective regularization by introducing Open-set samples with Dynamic Noisy Labels (ODNL) into training.
arXiv Detail & Related papers (2021-06-21T07:15:50Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
The presence of label noise often misleads the training of deep neural networks.
We show that the errors in human-annotated labels are more likely to be dependent on the difficulty levels of tasks.
arXiv Detail & Related papers (2020-12-22T06:36:58Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
Noise in gradient descent provides a crucial implicit regularization effect for training over parameterized models.
We show that parameter-dependent noise -- induced by mini-batches or label perturbation -- is far more effective than Gaussian noise.
Our analysis reveals that parameter-dependent noise introduces a bias towards local minima with smaller noise variance, whereas spherical Gaussian noise does not.
arXiv Detail & Related papers (2020-06-15T18:31:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.