論文の概要: NIMBA: Towards Robust and Principled Processing of Point Clouds With SSMs
- arxiv url: http://arxiv.org/abs/2411.00151v1
- Date: Thu, 31 Oct 2024 18:58:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:50:13.821405
- Title: NIMBA: Towards Robust and Principled Processing of Point Clouds With SSMs
- Title(参考訳): NIMBA: SSMによるポイントクラウドのロバストで原則的な処理を目指して
- Authors: Nursena Köprücü, Destiny Okpekpe, Antonio Orvieto,
- Abstract要約: データ複製を必要とせずに3次元空間構造を維持できる点雲を1次元配列に変換する手法を提案する。
本手法では位置埋め込みは必要とせず, 精度を保ちながら短いシーケンス長が可能である。
- 参考スコア(独自算出の注目度): 9.978766637766373
- License:
- Abstract: Transformers have become dominant in large-scale deep learning tasks across various domains, including text, 2D and 3D vision. However, the quadratic complexity of their attention mechanism limits their efficiency as the sequence length increases, particularly in high-resolution 3D data such as point clouds. Recently, state space models (SSMs) like Mamba have emerged as promising alternatives, offering linear complexity, scalability, and high performance in long-sequence tasks. The key challenge in the application of SSMs in this domain lies in reconciling the non-sequential structure of point clouds with the inherently directional (or bi-directional) order-dependent processing of recurrent models like Mamba. To achieve this, previous research proposed reorganizing point clouds along multiple directions or predetermined paths in 3D space, concatenating the results to produce a single 1D sequence capturing different views. In our work, we introduce a method to convert point clouds into 1D sequences that maintain 3D spatial structure with no need for data replication, allowing Mamba sequential processing to be applied effectively in an almost permutation-invariant manner. In contrast to other works, we found that our method does not require positional embeddings and allows for shorter sequence lengths while still achieving state-of-the-art results in ModelNet40 and ScanObjectNN datasets and surpassing Transformer-based models in both accuracy and efficiency.
- Abstract(参考訳): トランスフォーマーはテキスト、2D、3Dビジョンなど、さまざまな領域にわたる大規模なディープラーニングタスクにおいて支配的になっている。
しかし、注意機構の二次的な複雑さは、特に点雲のような高解像度の3Dデータにおいて、シーケンス長が増加するにつれて効率を制限している。
最近、Mambaのような状態空間モデル(SSM)が、線形複雑性、スケーラビリティ、長期タスクにおけるハイパフォーマンスを提供する、有望な代替手段として登場した。
この領域におけるSSMの適用における重要な課題は、ポイントクラウドの非順序構造と、マンバのようなリカレントモデルの本質的に指向性(または双方向)な順序依存処理との整合性である。
これを実現するために、以前の研究では、複数の方向に沿った点雲や3次元空間の所定の経路を再構成し、結果を結合して異なるビューをキャプチャする単一の1Dシーケンスを生成することを提案した。
本研究では,データ複製を必要とせずに3次元空間構造を維持できる点雲を1次元配列に変換する手法を提案する。
他の研究とは対照的に,本手法では位置埋め込みを必要とせず,ModelNet40 や ScanObjectNN のデータセットで最新の結果が得られ,Transformer ベースのモデルを精度と効率の両方で上回っている。
関連論文リスト
- Mamba24/8D: Enhancing Global Interaction in Point Clouds via State Space Model [37.375866491592305]
私たちは、ポイントクラウドドメインにSSMベースのアーキテクチャであるMambaを紹介します。
本稿では,線形複雑性下でのグローバルモデリング能力の強いMamba24/8Dを提案する。
Mamba24/8Dは、複数の3Dポイントクラウドセグメンテーションタスクにおける技術結果の状態を取得する。
論文 参考訳(メタデータ) (2024-06-25T10:23:53Z) - Voxel Mamba: Group-Free State Space Models for Point Cloud based 3D Object Detection [59.34834815090167]
3Dボクセルをシリアライズして複数のシーケンスにグループ化し、トランスフォーマーに入力するシリアライズベースの手法は、3Dオブジェクト検出においてその効果を実証している。
グループフリー戦略を用いて、ボクセルの全空間を1つのシーケンスにシリアライズするVoxel SSMを提案する。
論文 参考訳(メタデータ) (2024-06-15T17:45:07Z) - Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model [18.30032389736101]
状態空間モデル(SSM)に基づくMambaモデルは、線形複雑性のみを持つ複数の領域でTransformerより優れている。
我々は,局所的特徴抽出を強化するために,ポイントクラウド学習に適した状態空間モデルであるMamba3Dを提案する。
論文 参考訳(メタデータ) (2024-04-23T12:20:27Z) - Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3Dポイントクラウドシーケンスは、現実世界の環境における最も一般的で実用的な表現の1つとして機能する。
textitStructured Point Cloud Videos (SPCV) と呼ばれる新しい汎用表現を提案する。
SPCVは点雲列を空間的滑らかさと時間的一貫性を持つ2Dビデオとして再編成し、画素値は点の3D座標に対応する。
論文 参考訳(メタデータ) (2024-03-02T08:18:57Z) - Point Cloud Mamba: Point Cloud Learning via State Space Model [73.7454734756626]
我々は,マンバをベースとしたポイントクラウド法が,トランスフォーマや多層パーセプトロン(MLP)に基づく従来手法よりも優れていることを示す。
特に,マルチ層パーセプトロン(MLP)を用いて,マンバをベースとした点雲法が従来手法より優れていることを示す。
Point Cloud Mambaは、最先端(SOTA)のポイントベースメソッドであるPointNeXtを超え、ScanNN、ModelNet40、ShapeNetPart、S3DISデータセット上での新たなSOTAパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-03-01T18:59:03Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
本稿では,各トラックレットを連続ストリームとみなす新しいアプローチを提案する。
各タイムスタンプでは、現在のフレームだけがネットワークに送られ、メモリバンクに格納された複数フレームの履歴機能と相互作用する。
頑健な追跡のためのマルチフレーム機能の利用性を高めるために,コントラッシブシーケンス強化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-14T02:58:27Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。