Building Multi-Agent Copilot towards Autonomous Agricultural Data Management and Analysis
- URL: http://arxiv.org/abs/2411.00188v1
- Date: Thu, 31 Oct 2024 20:15:14 GMT
- Title: Building Multi-Agent Copilot towards Autonomous Agricultural Data Management and Analysis
- Authors: Yu Pan, Jianxin Sun, Hongfeng Yu, Joe Luck, Geng Bai, Nipuna Chamara, Yufeng Ge, Tala Awada,
- Abstract summary: We build a proof-of-concept multi-agent system called ADMA Copilot, which can understand user's intent.
ADMA Copilot accomplishes tasks automatically, in which three agents: a LLM based controller, an input formatter and an output formatter collaborate.
- Score: 2.763670421921841
- License:
- Abstract: Current agricultural data management and analysis paradigms are to large extent traditional, in which data collecting, curating, integration, loading, storing, sharing and analyzing still involve too much human effort and know-how. The experts, researchers and the farm operators need to understand the data and the whole process of data management pipeline to make fully use of the data. The essential problem of the traditional paradigm is the lack of a layer of orchestrational intelligence which can understand, organize and coordinate the data processing utilities to maximize data management and analysis outcome. The emerging reasoning and tool mastering abilities of large language models (LLM) make it a potentially good fit to this position, which helps a shift from the traditional user-driven paradigm to AI-driven paradigm. In this paper, we propose and explore the idea of a LLM based copilot for autonomous agricultural data management and analysis. Based on our previously developed platform of Agricultural Data Management and Analytics (ADMA), we build a proof-of-concept multi-agent system called ADMA Copilot, which can understand user's intent, makes plans for data processing pipeline and accomplishes tasks automatically, in which three agents: a LLM based controller, an input formatter and an output formatter collaborate together. Different from existing LLM based solutions, by defining a meta-program graph, our work decouples control flow and data flow to enhance the predictability of the behaviour of the agents. Experiments demonstrates the intelligence, autonomy, efficacy, efficiency, extensibility, flexibility and privacy of our system. Comparison is also made between ours and existing systems to show the superiority and potential of our system.
Related papers
- Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - LAMBDA: A Large Model Based Data Agent [7.240586338370509]
We introduce LArge Model Based Data Agent (LAMBDA), a novel open-source, code-free multi-agent data analysis system.
LAMBDA is designed to address data analysis challenges in complex data-driven applications.
It has the potential to enhance data analysis paradigms by seamlessly integrating human and artificial intelligence.
arXiv Detail & Related papers (2024-07-24T06:26:36Z) - Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
We introduce Spider2-V, the first multimodal agent benchmark focusing on professional data science and engineering.
Spider2-V features real-world tasks in authentic computer environments and incorporating 20 enterprise-level professional applications.
These tasks evaluate the ability of a multimodal agent to perform data-related tasks by writing code and managing the GUI in enterprise data software systems.
arXiv Detail & Related papers (2024-07-15T17:54:37Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - Transforming Agriculture with Intelligent Data Management and Insights [3.027257459810039]
Modern agriculture faces grand challenges to meet increased demands for food, fuel, feed, and fiber under the constraints of climate change and dwindling natural resources.
Data innovation is urgently required to secure and improve the productivity, sustainability, and resilience of our agroecosystems.
arXiv Detail & Related papers (2023-11-07T22:02:54Z) - Towards Lightweight Data Integration using Multi-workflow Provenance and
Data Observability [0.2517763905487249]
Integrated data analysis plays a crucial role in scientific discovery, especially in the current AI era.
We propose MIDA: an approach for lightweight runtime Multi-workflow Integrated Data Analysis.
We show near-zero overhead running up to 100,000 tasks on 1,680 CPU cores on the Summit supercomputer.
arXiv Detail & Related papers (2023-08-17T14:20:29Z) - ChatGPT as your Personal Data Scientist [0.9689893038619583]
This paper introduces a ChatGPT-based conversational data-science framework to act as a "personal data scientist"
Our model pivots around four dialogue states: Data visualization, Task Formulation, Prediction Engineering, and Result Summary and Recommendation.
In summary, we developed an end-to-end system that not only proves the viability of the novel concept of conversational data science but also underscores the potency of LLMs in solving complex tasks.
arXiv Detail & Related papers (2023-05-23T04:00:16Z) - Demonstration of InsightPilot: An LLM-Empowered Automated Data
Exploration System [48.62158108517576]
We introduce InsightPilot, an automated data exploration system designed to simplify the data exploration process.
InsightPilot automatically selects appropriate analysis intents, such as understanding, summarizing, and explaining.
In brief, an IQuery is an abstraction and automation of data analysis operations, which mimics the approach of data analysts.
arXiv Detail & Related papers (2023-04-02T07:27:49Z) - Analytical Engines With Context-Rich Processing: Towards Efficient
Next-Generation Analytics [12.317930859033149]
We envision an analytical engine co-optimized with components that enable context-rich analysis.
We aim for a holistic pipeline cost- and rule-based optimization across relational and model-based operators.
arXiv Detail & Related papers (2022-12-14T21:46:33Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Data-driven Koopman Operators for Model-based Shared Control of
Human-Machine Systems [66.65503164312705]
We present a data-driven shared control algorithm that can be used to improve a human operator's control of complex machines.
Both the dynamics and information about the user's interaction are learned from observation through the use of a Koopman operator.
We find that model-based shared control significantly improves task and control metrics when compared to a natural learning, or user only, control paradigm.
arXiv Detail & Related papers (2020-06-12T14:14:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.