Monitoring fairness in machine learning models that predict patient mortality in the ICU
- URL: http://arxiv.org/abs/2411.00190v2
- Date: Wed, 06 Nov 2024 20:32:55 GMT
- Title: Monitoring fairness in machine learning models that predict patient mortality in the ICU
- Authors: Tempest A. van Schaik, Xinggang Liu, Louis Atallah, Omar Badawi,
- Abstract summary: We investigate how well models perform for patient groups with different race, sex and medical diagnoses.
We show how fairness analysis provides a more detailed and insightful comparison of model performance than traditional accuracy metrics alone.
- Score: 0.0
- License:
- Abstract: This work proposes a fairness monitoring approach for machine learning models that predict patient mortality in the ICU. We investigate how well models perform for patient groups with different race, sex and medical diagnoses. We investigate Documentation bias in clinical measurement, showing how fairness analysis provides a more detailed and insightful comparison of model performance than traditional accuracy metrics alone.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Towards Trustworthy Cross-patient Model Development [3.109478324371548]
We study differences in model performance and explainability when trained for all patients and one patient at a time.
The results show that patients' demographics has a large impact on the performance and explainability and thus trustworthiness.
arXiv Detail & Related papers (2021-12-20T10:51:04Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
We introduce an extendable testing framework that evaluates the behavior of clinical outcome models regarding changes of the input.
We show that model behavior varies drastically even when fine-tuned on the same data and that allegedly best-performing models have not always learned the most medically plausible patterns.
arXiv Detail & Related papers (2021-11-30T15:52:04Z) - Development of patients triage algorithm from nationwide COVID-19
registry data based on machine learning [1.0323063834827415]
This paper provides the development processes of the severity assessment model using machine learning techniques.
Model only requires basic patients' basic personal data, allowing for them to judge their own severity.
We aim to establish a medical system that allows patients to check their own severity and informs them to visit the appropriate clinic center based on the past treatment details of other patients with similar severity.
arXiv Detail & Related papers (2021-09-18T19:56:27Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Building Deep Learning Models to Predict Mortality in ICU Patients [0.0]
We propose several deep learning models using the same features as the SAPS II score.
Several experiments have been conducted based on the well known clinical dataset Medical Information Mart for Intensive Care III.
arXiv Detail & Related papers (2020-12-11T16:27:04Z) - ISeeU2: Visually Interpretable ICU mortality prediction using deep
learning and free-text medical notes [0.0]
We show a Deep Learning model trained on MIMIC-III to predict mortality using raw nursing notes, together with visual explanations for word importance.
Our model reaches a ROC of 0.8629, outperforming the traditional SAPS-II score and providing enhanced interpretability when compared with similar Deep Learning approaches.
arXiv Detail & Related papers (2020-05-19T08:30:34Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z) - A Visual Analytics System for Multi-model Comparison on Clinical Data
Predictions [21.86694022749115]
We develop a visual analytics system that compares multiple models' prediction criteria and evaluates their consistency.
We demonstrate the effectiveness of our system to assist clinicians and researchers in comparing and quantitatively evaluating different machine learning methods.
arXiv Detail & Related papers (2020-02-18T20:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.