Minimum Empirical Divergence for Sub-Gaussian Linear Bandits
- URL: http://arxiv.org/abs/2411.00229v1
- Date: Thu, 31 Oct 2024 21:54:44 GMT
- Title: Minimum Empirical Divergence for Sub-Gaussian Linear Bandits
- Authors: Kapilan Balagopalan, Kwang-Sung Jun,
- Abstract summary: LinMED is a randomized algorithm that admits a closed-form computation of the arm sampling probabilities.
Our empirical study shows that LinMED has a competitive performance with the state-of-the-art algorithms.
- Score: 10.750348548547704
- License:
- Abstract: We propose a novel linear bandit algorithm called LinMED (Linear Minimum Empirical Divergence), which is a linear extension of the MED algorithm that was originally designed for multi-armed bandits. LinMED is a randomized algorithm that admits a closed-form computation of the arm sampling probabilities, unlike the popular randomized algorithm called linear Thompson sampling. Such a feature proves useful for off-policy evaluation where the unbiased evaluation requires accurately computing the sampling probability. We prove that LinMED enjoys a near-optimal regret bound of $d\sqrt{n}$ up to logarithmic factors where $d$ is the dimension and $n$ is the time horizon. We further show that LinMED enjoys a $\frac{d^2}{\Delta}\left(\log^2(n)\right)\log\left(\log(n)\right)$ problem-dependent regret where $\Delta$ is the smallest sub-optimality gap, which is lower than $\frac{d^2}{\Delta}\log^3(n)$ of the standard algorithm OFUL (Abbasi-yadkori et al., 2011). Our empirical study shows that LinMED has a competitive performance with the state-of-the-art algorithms.
Related papers
- Indexed Minimum Empirical Divergence-Based Algorithms for Linear Bandits [55.938644481736446]
Indexed Minimum Empirical Divergence (IMED) is a highly effective approach to the multi-armed bandit problem.
It has been observed to empirically outperform UCB-based algorithms and Thompson Sampling.
We present novel linear versions of the IMED algorithm, which we call the family of LinIMED algorithms.
arXiv Detail & Related papers (2024-05-24T04:11:58Z) - Computational-Statistical Gaps for Improper Learning in Sparse Linear Regression [4.396860522241307]
We show that an efficient learning algorithm for sparse linear regression can be used to solve sparse PCA problems with a negative spike.
We complement our reduction with low-degree and statistical query lower bounds for the sparse problems from which we reduce.
arXiv Detail & Related papers (2024-02-21T19:55:01Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - A Doubly Robust Approach to Sparse Reinforcement Learning [19.68978899041642]
We propose a new regret algorithm for episodic sparse linear Markov decision process (SMDP)
The proposed algorithm is $tildeO(sigma-1_min s_star H sqrtN)$, where $sigma_min$ denotes the restrictive minimum eigenvalue of the average Gram matrix of feature vectors.
arXiv Detail & Related papers (2023-10-23T18:52:17Z) - Variance-Dependent Regret Bounds for Linear Bandits and Reinforcement
Learning: Adaptivity and Computational Efficiency [90.40062452292091]
We present the first computationally efficient algorithm for linear bandits with heteroscedastic noise.
Our algorithm is adaptive to the unknown variance of noise and achieves an $tildeO(d sqrtsum_k = 1K sigma_k2 + d)$ regret.
We also propose a variance-adaptive algorithm for linear mixture Markov decision processes (MDPs) in reinforcement learning.
arXiv Detail & Related papers (2023-02-21T00:17:24Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - Maillard Sampling: Boltzmann Exploration Done Optimally [11.282341369957216]
This thesis presents a randomized algorithm for the $K$-armed bandit problem.
Maillard sampling (MS) computes the probability of choosing each arm in a closed form.
We propose a variant of MS called MS$+$ that improves its minimax bound to $sqrtKTlogK$ without losing the optimality.
arXiv Detail & Related papers (2021-11-05T06:50:22Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov
Decision Processes [91.38793800392108]
We study reinforcement learning with linear function approximation where the underlying transition probability kernel of the Markov decision process (MDP) is a linear mixture model.
We propose a new, computationally efficient algorithm with linear function approximation named $textUCRL-VTR+$ for the aforementioned linear mixture MDPs.
To the best of our knowledge, these are the first computationally efficient, nearly minimax optimal algorithms for RL with linear function approximation.
arXiv Detail & Related papers (2020-12-15T18:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.