Exponential Topology-enabled Scalable Communication in Multi-agent Reinforcement Learning
- URL: http://arxiv.org/abs/2502.19717v1
- Date: Thu, 27 Feb 2025 03:15:31 GMT
- Title: Exponential Topology-enabled Scalable Communication in Multi-agent Reinforcement Learning
- Authors: Xinran Li, Xiaolu Wang, Chenjia Bai, Jun Zhang,
- Abstract summary: We develop a scalable communication protocol for cooperative multi-agent reinforcement learning (MARL)<n>We propose utilizing the exponential topology to enable rapid information dissemination among agents by leveraging its small-diameter and small-size properties.<n>Experiments on large-scale cooperative benchmarks, including MAgent and Infrastructure Management Planning, demonstrate the superior performance and robust zero-shot transferability of ExpoComm.
- Score: 9.48183472865413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In cooperative multi-agent reinforcement learning (MARL), well-designed communication protocols can effectively facilitate consensus among agents, thereby enhancing task performance. Moreover, in large-scale multi-agent systems commonly found in real-world applications, effective communication plays an even more critical role due to the escalated challenge of partial observability compared to smaller-scale setups. In this work, we endeavor to develop a scalable communication protocol for MARL. Unlike previous methods that focus on selecting optimal pairwise communication links-a task that becomes increasingly complex as the number of agents grows-we adopt a global perspective on communication topology design. Specifically, we propose utilizing the exponential topology to enable rapid information dissemination among agents by leveraging its small-diameter and small-size properties. This approach leads to a scalable communication protocol, named ExpoComm. To fully unlock the potential of exponential graphs as communication topologies, we employ memory-based message processors and auxiliary tasks to ground messages, ensuring that they reflect global information and benefit decision-making. Extensive experiments on large-scale cooperative benchmarks, including MAgent and Infrastructure Management Planning, demonstrate the superior performance and robust zero-shot transferability of ExpoComm compared to existing communication strategies. The code is publicly available at https://github.com/LXXXXR/ExpoComm.
Related papers
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration.
Inspired by the neural scaling law, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - Large Language Model Enhanced Multi-Agent Systems for 6G Communications [94.45712802626794]
We propose a multi-agent system with customized communication knowledge and tools for solving communication related tasks using natural language.
We validate the effectiveness of the proposed multi-agent system by designing a semantic communication system.
arXiv Detail & Related papers (2023-12-13T02:35:57Z) - Communication-Efficient Federated Optimization over Semi-Decentralized Networks [35.6514238987893]
Communication efficiency is one of the most challenging bottlenecks in large-scale networks.<n>We study the communication efficiency under semi-decentralized communication protocol, in which agents can perform both agent-to-agent and agent-to-server communication.
arXiv Detail & Related papers (2023-11-30T18:37:15Z) - FCMNet: Full Communication Memory Net for Team-Level Cooperation in
Multi-Agent Systems [15.631744703803806]
We introduce FCMNet, a reinforcement learning based approach that allows agents to simultaneously learn an effective multi-hop communications protocol.
Using a simple multi-hop topology, we endow each agent with the ability to receive information sequentially encoded by every other agent at each time step.
FCMNet outperforms state-of-the-art communication-based reinforcement learning methods in all StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2022-01-28T09:12:01Z) - Multi-agent Communication with Graph Information Bottleneck under
Limited Bandwidth (a position paper) [92.11330289225981]
In many real-world scenarios, communication can be expensive and the bandwidth of the multi-agent system is subject to certain constraints.
Redundant messages who occupy the communication resources can block the transmission of informative messages and thus jeopardize the performance.
We propose a novel multi-agent communication module, CommGIB, which effectively compresses the structure information and node information in the communication graph to deal with bandwidth-constrained settings.
arXiv Detail & Related papers (2021-12-20T07:53:44Z) - Cooperative Policy Learning with Pre-trained Heterogeneous Observation
Representations [51.8796674904734]
We propose a new cooperative learning framework with pre-trained heterogeneous observation representations.
We employ an encoder-decoder based graph attention to learn the intricate interactions and heterogeneous representations.
arXiv Detail & Related papers (2020-12-24T04:52:29Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
This work explores the large-scale multi-agent communication mechanism under a multi-agent reinforcement learning (MARL) setting.
We propose a novel framework termed as Learning Structured Communication (LSC) by using a more flexible and efficient communication topology.
arXiv Detail & Related papers (2020-02-11T07:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.