AnyMAC: Cascading Flexible Multi-Agent Collaboration via Next-Agent Prediction
- URL: http://arxiv.org/abs/2506.17784v1
- Date: Sat, 21 Jun 2025 18:34:43 GMT
- Title: AnyMAC: Cascading Flexible Multi-Agent Collaboration via Next-Agent Prediction
- Authors: Song Wang, Zhen Tan, Zihan Chen, Shuang Zhou, Tianlong Chen, Jundong Li,
- Abstract summary: We propose a new framework that rethinks multi-agent coordination through a sequential structure rather than a graph structure.<n>Our method focuses on two key directions: (1) Next-Agent Prediction, which selects the most suitable agent role at each step, and (2) Next-Context Selection, which enables each agent to selectively access relevant information from any previous step.
- Score: 70.60422261117816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in large language model (LLM)-based multi-agent collaboration highlights the power of structured communication in enabling collective intelligence. However, existing methods largely rely on static or graph-based inter-agent topologies, lacking the potential adaptability and flexibility in communication. In this work, we propose a new framework that rethinks multi-agent coordination through a sequential structure rather than a graph structure, offering a significantly larger topology space for multi-agent communication. Our method focuses on two key directions: (1) Next-Agent Prediction, which selects the most suitable agent role at each step, and (2) Next-Context Selection (NCS), which enables each agent to selectively access relevant information from any previous step. Together, these components construct task-adaptive communication pipelines that support both role flexibility and global information flow. Extensive evaluations across multiple benchmarks demonstrate that our approach achieves superior performance while substantially reducing communication overhead.
Related papers
- AgentMaster: A Multi-Agent Conversational Framework Using A2A and MCP Protocols for Multimodal Information Retrieval and Analysis [0.0]
We present a pilot study of AgentMaster, a novel modular multi-protocol MAS framework with self-implemented A2A and MCP.<n>The system supports natural language interaction without prior technical expertise and responds to multimodal queries.<n>Overall, our proposed framework contributes to the potential capabilities of domain-specific, cooperative, and scalable conversational AI powered by MAS.
arXiv Detail & Related papers (2025-07-08T03:34:26Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents.<n>Existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition.<n>We introduce MultiAgentBench, a benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios.
arXiv Detail & Related papers (2025-03-03T05:18:50Z) - Exponential Topology-enabled Scalable Communication in Multi-agent Reinforcement Learning [9.48183472865413]
We develop a scalable communication protocol for cooperative multi-agent reinforcement learning (MARL)<n>We propose utilizing the exponential topology to enable rapid information dissemination among agents by leveraging its small-diameter and small-size properties.<n>Experiments on large-scale cooperative benchmarks, including MAgent and Infrastructure Management Planning, demonstrate the superior performance and robust zero-shot transferability of ExpoComm.
arXiv Detail & Related papers (2025-02-27T03:15:31Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Multi-Agent Coordination via Multi-Level Communication [29.388570369796586]
We propose a novel multi-level communication scheme, Sequential Communication (SeqComm)
In this paper, we propose a novel multi-level communication scheme, Sequential Communication (SeqComm)
arXiv Detail & Related papers (2022-09-26T14:08:03Z) - Multi-agent Communication with Graph Information Bottleneck under
Limited Bandwidth (a position paper) [92.11330289225981]
In many real-world scenarios, communication can be expensive and the bandwidth of the multi-agent system is subject to certain constraints.
Redundant messages who occupy the communication resources can block the transmission of informative messages and thus jeopardize the performance.
We propose a novel multi-agent communication module, CommGIB, which effectively compresses the structure information and node information in the communication graph to deal with bandwidth-constrained settings.
arXiv Detail & Related papers (2021-12-20T07:53:44Z) - Specializing Inter-Agent Communication in Heterogeneous Multi-Agent
Reinforcement Learning using Agent Class Information [1.713291434132985]
This work proposes the representation of multi-agent communication capabilities as a directed labeled heterogeneous agent graph.
We also introduce a neural network architecture that specializes communication in fully cooperative heterogeneous multi-agent tasks.
arXiv Detail & Related papers (2020-12-14T15:09:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.