Shortcuts to adiabatic state transfer in time-modulated two-level non-Hermitian systems
- URL: http://arxiv.org/abs/2411.00428v2
- Date: Tue, 05 Nov 2024 15:23:27 GMT
- Title: Shortcuts to adiabatic state transfer in time-modulated two-level non-Hermitian systems
- Authors: Qi-Cheng Wu, Jun-Long Zhao, Yan-Hui Zhou, Biao-Liang Ye, Yu-Liang Fang, Zheng-Wei Zhou, Chui-Ping Yang,
- Abstract summary: Non spectral properties of non-Hermitian systems can give rise to intriguing effects that lack counterparts in Hermitian systems.
We propose a scheme for achieving robust and rapid adiabatic state transfer in time-modulated two-level non-Hermitian systems.
- Score: 0.3926357402982764
- License:
- Abstract: Nontrivial spectral properties of non-Hermitian systems can give rise to intriguing effects that lack counterparts in Hermitian systems. For instance, when dynamically varying system parameters along a path enclosing an exceptional point (EP), chiral mode conversion occurs. A recent study [Phys. Rev. Lett. 133, 113802 (2024)] demonstrates the achievability of pure adiabatic state transfer by specifically selecting a trajectory in the system parameter space where the corresponding evolution operator exhibits a real spectrum while winding around an EP. However, the intended adiabatic state transfer becomes fragile when taking into account the effect of the nonadiabatic transition. In this work, we propose a scheme for achieving robust and rapid adiabatic state transfer in time-modulated two-level non-Hermitian systems by appropriately modulating system Hamiltonian and time-evolution trajectory. Numerical simulations confirm that complete adiabatic transfer can always be achieved even under nonadiabatic conditions after one period for different initialized adiabatic states, and the scheme remains insensitive to moderate fluctuations in control parameters. Therefore, this scheme offers alternative approaches for quantum-state engineering in non-Hermitian systems.
Related papers
- Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation [33.76659022113328]
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions.
We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions.
We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension.
arXiv Detail & Related papers (2024-07-22T03:52:14Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Restoring Adiabatic State Transfer in Time-Modulated Non-Hermitian
Systems [0.0]
We show that adiabaticity can be achieved when dynamically winding around exceptional points (EPs) in non-Hermitian systems.
Our findings offer a promise for advancing various wave manipulation protocols in both quantum and classical domains.
arXiv Detail & Related papers (2024-02-23T12:53:16Z) - Non-Hermitian Floquet-Free Analytically Solvable Time Dependant Systems [0.0]
We introduce a class of time-dependent non-Hermitian Hamiltonians that can describe a two-level system with temporally modulated on-site potential and couplings.
Our proposed class of Hamiltonians can be employed in different platforms such as electronic circuits, acoustics, and photonics to design structures with hidden PT-symmetry.
arXiv Detail & Related papers (2023-02-02T04:57:13Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Signature of exceptional point phase transition in Hermitian systems [0.0]
We demonstrate an existence of signature of exceptional point phase transition in Hermitian systems free from dissipation and amplification.
We show that the transition occurs even in the non-Markovian regime of the system dynamics.
We discuss the experimental scheme to observe the signature of EP phase transition in the non-Markovian regime.
arXiv Detail & Related papers (2022-07-05T07:57:11Z) - Trajectory tracking for non-Markovian quantum systems [0.0]
We propose a systematic scheme to engineer quantum states of a quantum system governed by a non-Markovian master equation.
We realize instantaneous-steady-state tracking and a complete population inversion with control parameters which are available in experimental settings.
arXiv Detail & Related papers (2022-01-04T02:23:56Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z) - Non-Hermitian Floquet phases with even-integer topological invariants in
a periodically quenched two-leg ladder [0.0]
Periodically driven non-Hermitian systems could possess exotic nonequilibrium phases with unique topological, dynamical and transport properties.
We introduce an experimentally realizable two-leg ladder model subjecting to both time-periodic quenches and non-Hermitian effects.
Our work thus introduces a new type of non-Hermitian Floquet topological matter, and further reveals the richness of topology and dynamics in driven open systems.
arXiv Detail & Related papers (2020-06-16T03:22:53Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.