SAMBLE: Shape-Specific Point Cloud Sampling for an Optimal Trade-Off Between Local Detail and Global Uniformity
- URL: http://arxiv.org/abs/2504.19581v1
- Date: Mon, 28 Apr 2025 08:42:24 GMT
- Title: SAMBLE: Shape-Specific Point Cloud Sampling for an Optimal Trade-Off Between Local Detail and Global Uniformity
- Authors: Chengzhi Wu, Yuxin Wan, Hao Fu, Julius Pfrommer, Zeyun Zhong, Junwei Zheng, Jiaming Zhang, Jürgen Beyerer,
- Abstract summary: We propose a Sparse Attention Map and Bin-based Learning method (termed SAMBLE) to learn shape-specific sampling strategies for point cloud shapes.<n> SAMBLE effectively improves balance between sampling edge points for local details and preserving uniformity in the global shape.
- Score: 15.235115582773059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driven by the increasing demand for accurate and efficient representation of 3D data in various domains, point cloud sampling has emerged as a pivotal research topic in 3D computer vision. Recently, learning-to-sample methods have garnered growing interest from the community, particularly for their ability to be jointly trained with downstream tasks. However, previous learning-based sampling methods either lead to unrecognizable sampling patterns by generating a new point cloud or biased sampled results by focusing excessively on sharp edge details. Moreover, they all overlook the natural variations in point distribution across different shapes, applying a similar sampling strategy to all point clouds. In this paper, we propose a Sparse Attention Map and Bin-based Learning method (termed SAMBLE) to learn shape-specific sampling strategies for point cloud shapes. SAMBLE effectively achieves an improved balance between sampling edge points for local details and preserving uniformity in the global shape, resulting in superior performance across multiple common point cloud downstream tasks, even in scenarios with few-point sampling.
Related papers
- Curvature Informed Furthest Point Sampling [0.0]
We introduce a reinforcement learning-based sampling algorithm that enhances furthest point sampling (FPS)
Our approach ranks points by combining FPS-derived soft ranks with curvature scores computed by a deep neural network.
We provide comprehensive ablation studies, with both qualitative and quantitative insights into the effect of each feature on performance.
arXiv Detail & Related papers (2024-11-25T23:58:38Z) - iPUNet:Iterative Cross Field Guided Point Cloud Upsampling [20.925921503694894]
Point clouds acquired by 3D scanning devices are often sparse, noisy, and non-uniform, causing a loss of geometric features.
We present a learning-based point upsampling method, iPUNet, which generates dense and uniform points at arbitrary ratios.
We demonstrate that iPUNet is robust to handle noisy and non-uniformly distributed inputs, and outperforms state-of-the-art point cloud upsampling methods.
arXiv Detail & Related papers (2023-10-13T13:24:37Z) - Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent
with Learned Distance Functions [77.32043242988738]
We propose a new framework for accurate point cloud upsampling that supports arbitrary upsampling rates.
Our method first interpolates the low-res point cloud according to a given upsampling rate.
arXiv Detail & Related papers (2023-04-24T06:36:35Z) - Attention-based Point Cloud Edge Sampling [0.0]
Point cloud sampling is a less explored research topic for this data representation.
This paper proposes a non-generative Attention-based Point cloud Edge Sampling method (APES)
Both qualitative and quantitative experimental results show the superior performance of our sampling method on common benchmark tasks.
arXiv Detail & Related papers (2023-02-28T15:36:17Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
We develop a new point cloud upsampling pipeline called BIMS-PU.
We decompose the up/downsampling procedure into several up/downsampling sub-steps by breaking the target sampling factor into smaller factors.
We show that our method achieves superior results to state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-25T13:13:37Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - Beyond Farthest Point Sampling in Point-Wise Analysis [52.218037492342546]
We propose a novel data-driven sampler learning strategy for point-wise analysis tasks.
We learn sampling and downstream applications jointly.
Our experiments show that jointly learning of the sampler and task brings remarkable improvement over previous baseline methods.
arXiv Detail & Related papers (2021-07-09T08:08:44Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.