One for All: Universal Quantum Conic Programming Framework for Hard-Constrained Combinatorial Optimization Problems
- URL: http://arxiv.org/abs/2411.00435v1
- Date: Fri, 01 Nov 2024 08:00:30 GMT
- Title: One for All: Universal Quantum Conic Programming Framework for Hard-Constrained Combinatorial Optimization Problems
- Authors: Lennart Binkowski, Tobias J. Osborne, Marvin Schwiering, René Schwonnek, Timo Ziegler,
- Abstract summary: We present a unified quantum-classical framework for solving NP-complete constrained optimization problems.
We show that QCP's parameterized ansatz class always captures the optimum within its generated subcone.
- Score: 0.0
- License:
- Abstract: We present a unified quantum-classical framework for addressing NP-complete constrained combinatorial optimization problems, generalizing the recently proposed Quantum Conic Programming (QCP) approach. Accordingly, it inherits many favorable properties of the original proposal such as mitigation of the effects of barren plateaus and avoidance of NP-hard parameter optimization. By collecting the entire classical feasibility structure in a single constraint, we enlarge QCP's scope to arbitrary hard-constrained problems. Yet, we prove that the additional restriction is mild enough to still allow for an efficient parameter optimization via the formulation of a generalized eigenvalue problem (GEP) of adaptable dimension. Our rigorous proof further fills some apparent gaps in prior derivations of GEPs from parameter optimization problems. We further detail a measurement protocol for formulating the classical parameter optimization that does not require us to implement any (time evolution with a) problem-specific objective Hamiltonian or a quantum feasibility oracle. Lastly, we prove that, even under the influence of noise, QCP's parameterized ansatz class always captures the optimum attainable within its generated subcone. All of our results hold true for arbitrarily-constrained combinatorial optimization problems.
Related papers
- Optimal Parameter Configurations for Sequential Optimization of
Variational Quantum Eigensolver [5.005447280753645]
Variational Quantum Eigensolver (VQE) is a hybrid algorithm for finding the minimum eigenvalue/vector of a given Hamiltonian.
This paper focuses on the case where the components to be optimized are single-qubit gates.
arXiv Detail & Related papers (2023-03-13T13:07:27Z) - Fermionic Quantum Approximate Optimization Algorithm [11.00442581946026]
We propose fermionic quantum approximate optimization algorithm (FQAOA) for solving optimization problems with constraints.
FQAOA tackle the constrains issue by using fermion particle number preservation to intrinsically impose them throughout QAOA.
We provide a systematic guideline for designing the driver Hamiltonian for a given problem Hamiltonian with constraints.
arXiv Detail & Related papers (2023-01-25T18:36:58Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
We consider potentially non- optimized approximation problems.
In this paper, we propose an algorithm that achieves close to optimal a priori computational guarantees.
arXiv Detail & Related papers (2022-04-11T09:37:04Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
We propose a strategy to give high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths.
We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd"os-R'enyi graphs.
arXiv Detail & Related papers (2021-08-11T15:44:16Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.