Efficient QAOA Architecture for Solving Multi-Constrained Optimization Problems
- URL: http://arxiv.org/abs/2506.03115v2
- Date: Thu, 24 Jul 2025 07:14:29 GMT
- Title: Efficient QAOA Architecture for Solving Multi-Constrained Optimization Problems
- Authors: David Bucher, Daniel Porawski, Maximilian Janetschek, Jonas Stein, Corey O'Meara, Giorgio Cortiana, Claudia Linnhoff-Popien,
- Abstract summary: This paper proposes a novel combination of constraint encoding methods for the Quantum Approximate Optimization Ansatz.<n>One-hot constraints are enforced through $XY$-mixers that restrict the search space to the feasible sub-space naturally.<n>Since $XY$-mixers restrict the search space, specific state vector entries are always zero and can be omitted from the simulation, saving valuable memory and computing resources.
- Score: 3.757262277494307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel combination of constraint encoding methods for the Quantum Approximate Optimization Ansatz (QAOA). Real-world optimization problems typically consist of multiple types of constraints. To solve these optimization problems with quantum methods, normally, all constraints are added as quadratic penalty terms to the objective, which expands the search space and increases problem complexity. This work proposes a general workflow that extracts and encodes specific constraints directly into the circuit of QAOA: One-hot constraints are enforced through $XY$-mixers that restrict the search space to the feasible sub-space naturally. Inequality constraints are implemented through oracle-based Indicator Functions (IF). This paper focuses on the numerical benchmarks of the combined approach for solving the Multi-Knapsack (MKS) and the Prosumer Problem (PP), a modification of the MKS in the domain of electricity optimization. To this end, we introduce computational techniques that efficiently simulate the two presented constraint architectures. Since $XY$-mixers restrict the search space, specific state vector entries are always zero and can be omitted from the simulation, saving valuable memory and computing resources. We benchmark the combined method against the established QUBO formulation, yielding a better solution quality and probability of sampling the optimal solution. Despite more complex circuits, the time-to-solution is more than an order of magnitude faster compared to the baseline methods and exhibits more favorable scaling properties.
Related papers
- Adaptive Graph Shrinking for Quantum Optimization of Constrained Combinatorial Problems [4.266376725904727]
We propose a hybrid classical--quantum framework based on graph shrinking to reduce the number of variables and constraints in QUBO formulations of optimization problems.<n>Our approach improves solution feasibility, reduces repair complexity, and enhances quantum optimization quality on hardware-limited instances.
arXiv Detail & Related papers (2025-06-17T07:11:48Z) - SCOOP: A Quantum-Computing Framework for Constrained Combinatorial Optimization [0.0]
We present SCOOP, a novel framework for solving constrained optimization problems.<n>SCOOP transforms a constrained problem into an unconstrained counterpart, forming SCOOP problem twins.<n>We demonstrate the framework on three NP-hard problems, Minimum Dominating Set, Minimum Maximal Matching, and Minimum Set Cover.
arXiv Detail & Related papers (2025-04-15T06:17:23Z) - Compressed space quantum approximate optimization algorithm for constrained combinatorial optimization [6.407238428292173]
We introduce a method for engineering a compressed space that represents the feasible solution space with fewer qubits than the original.
We then propose compressed space QAOA, which seeks near-optimal solutions within this reduced space.
arXiv Detail & Related papers (2024-10-08T05:48:46Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Constrained mixers for the quantum approximate optimization algorithm [55.41644538483948]
We present a framework for constructing mixing operators that restrict the evolution to a subspace of the full Hilbert space.
We generalize the "XY"-mixer designed to preserve the subspace of "one-hot" states to the general case of subspaces given by a number of computational basis states.
Our analysis also leads to valid Trotterizations for "XY"-mixer with fewer CX gates than is known to date.
arXiv Detail & Related papers (2022-03-11T17:19:26Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
This paper introduces a quantum machine learning approach to learn the mixer Hamiltonian required to hard constrain the search subspace.
One can directly plug the learnt unitary into the QAOA framework using an adaptable ansatz.
We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constraints.
arXiv Detail & Related papers (2021-05-14T11:31:14Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical
and Quantum Computers [3.04585143845864]
We present a decomposition-based approach to extend the applicability of current approaches to "quadratic plus convex" mixed binary optimization problems.
We show that the alternating direction method of multipliers (ADMM) can split the MBO into a binary unconstrained problem (that can be solved with quantum algorithms)
The validity of the approach is then showcased by numerical results obtained on several optimization problems via simulations with VQE and QAOA on the quantum circuits implemented in Qiskit.
arXiv Detail & Related papers (2020-01-07T14:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.