Adaptive Multi-Objective Bayesian Optimization for Capacity Planning of Hybrid Heat Sources in Electric-Heat Coupling Systems of Cold Regions
- URL: http://arxiv.org/abs/2502.09280v1
- Date: Thu, 13 Feb 2025 12:50:43 GMT
- Title: Adaptive Multi-Objective Bayesian Optimization for Capacity Planning of Hybrid Heat Sources in Electric-Heat Coupling Systems of Cold Regions
- Authors: Ruizhe Yang, Zhongkai Yi, Ying Xu, Guiyu Chen, Haojie Yang, Rong Yi, Tongqing Li, Miaozhe ShenJin Li, Haoxiang Gao, Hongyu Duan,
- Abstract summary: Traditional heat-load generation pattern has become a problem leading to renewable energy source (RES) power curtailment in cold regions.
The model aims to identify non-dominant capacity allocation schemes for heat pumps, thermal energy storage, electric boilers, and combined storage heaters.
The integration of various heat sources from both generation and consumption sides enhances flexibility in utilization.
- Score: 8.077010795261076
- License:
- Abstract: The traditional heat-load generation pattern of combined heat and power generators has become a problem leading to renewable energy source (RES) power curtailment in cold regions, motivating the proposal of a planning model for alternative heat sources. The model aims to identify non-dominant capacity allocation schemes for heat pumps, thermal energy storage, electric boilers, and combined storage heaters to construct a Pareto front, considering both economic and sustainable objectives. The integration of various heat sources from both generation and consumption sides enhances flexibility in utilization. The study introduces a novel optimization algorithm, the adaptive multi-objective Bayesian optimization (AMBO). Compared to other widely used multi-objective optimization algorithms, AMBO eliminates predefined parameters that may introduce subjectivity from planners. Beyond the algorithm, the proposed model incorporates a noise term to account for inevitable simulation deviations, enabling the identification of better-performing planning results that meet the unique requirements of cold regions. What's more, the characteristics of electric-thermal coupling scenarios are captured and reflected in the operation simulation model to make sure the simulation is close to reality. Numerical simulation verifies the superiority of the proposed approach in generating a more diverse and evenly distributed Pareto front in a sample-efficient manner, providing comprehensive and objective planning choices.
Related papers
- Enhanced Photovoltaic Power Forecasting: An iTransformer and LSTM-Based Model Integrating Temporal and Covariate Interactions [16.705621552594643]
Existing models often struggle with capturing the complex relationships between target variables and covariates.
We propose a novel model architecture that leverages the iTransformer for feature extraction from target variables.
A cross-attention mechanism is integrated to fuse the outputs of both models, followed by a Kolmogorov-Arnold network mapping.
Results demonstrate that the proposed model effectively capture seasonal variations in PV power generation and improve forecasting accuracy.
arXiv Detail & Related papers (2024-12-03T09:16:13Z) - Machine Learning-Accelerated Multi-Objective Design of Fractured Geothermal Systems [17.040963667188525]
We report an Active Learning enhanced Evolutionary Multi-objective Optimization algorithm, integrated with hydrothermal simulations in fractured media.
Results demonstrate that the ALEMO approach achieves a remarkable reduction in required simulations, with a speed-up of 1-2 orders of magnitude (10-100 times faster) than traditional evolutionary methods.
arXiv Detail & Related papers (2024-11-01T10:39:23Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Learning-assisted Stochastic Capacity Expansion Planning: A Bayesian Optimization Approach [3.124884279860061]
Large-scale capacity expansion problems (CEPs) are central to costeffective decarbonization of regional energy systems.
Here, we propose a learning-assisted approximate solution method to tractably solve two-stage CEPs.
We show that our approach yields an estimated cost savings of up to 3.8% in comparison to series aggregation approaches.
arXiv Detail & Related papers (2024-01-19T01:40:58Z) - Model-based Causal Bayesian Optimization [74.78486244786083]
We introduce the first algorithm for Causal Bayesian Optimization with Multiplicative Weights (CBO-MW)
We derive regret bounds for CBO-MW that naturally depend on graph-related quantities.
Our experiments include a realistic demonstration of how CBO-MW can be used to learn users' demand patterns in a shared mobility system.
arXiv Detail & Related papers (2023-07-31T13:02:36Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
Deep generative models have emerged as a popular machine learning-based approach for inverse problems in the life sciences.
These problems often require sampling new designs that satisfy multiple properties of interest in addition to learning the data distribution.
arXiv Detail & Related papers (2022-10-19T19:04:45Z) - Machine learning based surrogate models for microchannel heat sink
optimization [0.0]
In this paper, microchannel designs with secondary channels and with ribs are investigated using computational fluid dynamics.
A workflow that combines Latin hypercube sampling, machine learning-based surrogate modeling and multi-objective optimization is proposed.
arXiv Detail & Related papers (2022-08-20T13:49:11Z) - Cascaded Deep Hybrid Models for Multistep Household Energy Consumption
Forecasting [5.478764356647437]
This study introduces two hybrid cascaded models for forecasting multistep household power consumption in different resolutions.
The proposed hybrid models achieve superior prediction performance compared to the existing multistep power consumption prediction methods.
arXiv Detail & Related papers (2022-07-06T11:02:23Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.