論文の概要: Differentiable Physics-based System Identification for Robotic Manipulation of Elastoplastic Materials
- arxiv url: http://arxiv.org/abs/2411.00554v1
- Date: Fri, 01 Nov 2024 13:04:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:27:59.398534
- Title: Differentiable Physics-based System Identification for Robotic Manipulation of Elastoplastic Materials
- Title(参考訳): 弾塑性材料のロボットマニピュレーションのための微分物理学に基づくシステム同定
- Authors: Xintong Yang, Ze Ji, Yu-Kun Lai,
- Abstract要約: 本研究は, ロボットアームが弾塑性材料と環境の物理パラメータを推定できる, 微分可能物理に基づくシステム同定(DPSI)フレームワークを提案する。
1つの現実世界の相互作用だけで、推定されたパラメータは視覚的および物理的に現実的な振る舞いを正確にシミュレートすることができる。
- 参考スコア(独自算出の注目度): 43.99845081513279
- License:
- Abstract: Robotic manipulation of volumetric elastoplastic deformable materials, from foods such as dough to construction materials like clay, is in its infancy, largely due to the difficulty of modelling and perception in a high-dimensional space. Simulating the dynamics of such materials is computationally expensive. It tends to suffer from inaccurately estimated physics parameters of the materials and the environment, impeding high-precision manipulation. Estimating such parameters from raw point clouds captured by optical cameras suffers further from heavy occlusions. To address this challenge, this work introduces a novel Differentiable Physics-based System Identification (DPSI) framework that enables a robot arm to infer the physics parameters of elastoplastic materials and the environment using simple manipulation motions and incomplete 3D point clouds, aligning the simulation with the real world. Extensive experiments show that with only a single real-world interaction, the estimated parameters, Young's modulus, Poisson's ratio, yield stress and friction coefficients, can accurately simulate visually and physically realistic deformation behaviours induced by unseen and long-horizon manipulation motions. Additionally, the DPSI framework inherently provides physically intuitive interpretations for the parameters in contrast to black-box approaches such as deep neural networks.
- Abstract(参考訳): ドーナツなどの食品から粘土のような建設資材まで、体積弾塑性変形性材料のロボット操作は、主に高次元空間におけるモデリングと知覚の難しさのために、その初期段階にある。
このような物質の力学をシミュレーションするのは計算コストがかかる。
物質と環境の不正確な物理パラメータに悩まされる傾向があり、高精度な操作を妨げる。
光カメラが捉えた生の点雲からそのようなパラメータを推定することは、さらに重い閉塞に悩まされる。
この課題に対処するために、ロボットアームが簡単な操作動作と不完全な3D点雲を用いて、弾塑性材料の物理パラメータと環境を推論し、シミュレーションを実世界と整合させることのできる、新しい微分可能な物理ベースのシステム同定(DPSI)フレームワークを導入する。
広汎な実験により、単一の実世界の相互作用だけでは、推定パラメータ、ヤング率、ポアソン比、降伏応力、摩擦係数は、目に見えない、長い水平運動によって引き起こされる視覚的および物理的に現実的な変形挙動を正確にシミュレートできることが示された。
さらに、DPSIフレームワークは、ディープニューラルネットワークのようなブラックボックスアプローチとは対照的に、本質的には物理的に直感的にパラメータの解釈を提供する。
関連論文リスト
- AdaptiGraph: Material-Adaptive Graph-Based Neural Dynamics for Robotic Manipulation [30.367498271886866]
本稿では,学習に基づく動的モデリング手法であるAdaptiGraphを紹介する。
ロボットは様々な難易度の高い変形可能な素材を予測し、適応し、制御することができる。
実世界の変形可能な物体の多種多様な集合を含む予測・操作タスクについて,予測精度とタスク習熟度に優れることを示す。
論文 参考訳(メタデータ) (2024-07-10T17:57:04Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
ビデオ拡散モデルを用いて3Dオブジェクトの様々な物理的特性を学習する新しい手法である textbfPhysics3D を提案する。
本手法では,粘弾性材料モデルに基づく高一般化物理シミュレーションシステムを設計する。
弾性材料とプラスチック材料の両方を用いて, 本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-06T17:59:47Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
PHYRECONは、微分可能なレンダリングと微分可能な物理シミュレーションの両方を利用して暗黙的な表面表現を学習する最初のアプローチである。
この設計の中心は、SDFに基づく暗黙の表現と明示的な表面点の間の効率的な変換である。
また,物理シミュレータの安定性も向上し,全データセットに対して少なくとも40%の改善が得られた。
論文 参考訳(メタデータ) (2024-04-25T15:06:58Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - PAC-NeRF: Physics Augmented Continuum Neural Radiance Fields for
Geometry-Agnostic System Identification [64.61198351207752]
ビデオからのシステム同定(オブジェクトの物理的パラメータを推定する)への既存のアプローチは、既知のオブジェクトジオメトリを仮定する。
本研究では,オブジェクトの形状やトポロジを仮定することなく,多視点ビデオの集合から物理系を特徴付けるパラメータを同定することを目的とする。
マルチビュービデオから高ダイナミックな物体の未知の幾何学的パラメータと物理的パラメータを推定するために,Physics Augmented Continuum Neural Radiance Fields (PAC-NeRF)を提案する。
論文 参考訳(メタデータ) (2023-03-09T18:59:50Z) - Learning Material Parameters and Hydrodynamics of Soft Robotic Fish via
Differentiable Simulation [26.09104786491426]
本フレームワークは, 実ハードウェアにおける複合バイモルフ曲げ構造の動的挙動の高精度予測を可能にする。
我々は,ロボットの材料パラメータと流体力学を学習するための,実験的に検証された高速な最適化パイプラインを実証した。
我々は水中ソフトロボットの特定の応用に焦点をあてるが、我々のフレームワークは空気圧で作動するソフトメカニズムにも適用できる。
論文 参考訳(メタデータ) (2021-09-30T05:24:02Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
人間は、物体の物理的特性を直感的に認識し、複雑な相互作用に従事している場合でも、その動きを予測する。
我々は、物理を同時に推論し、視覚と力学の先行に基づく将来の予測を行うニューラルモデルを提案する。
実験により、我々のモデルはいくつかの観測範囲内で物理的特性を推測できることが示され、モデルが目に見えないシナリオに迅速に適応し、将来正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-04-28T17:06:38Z) - Gaining a Sense of Touch. Physical Parameters Estimation using a Soft
Gripper and Neural Networks [3.0892724364965005]
ロボットグリップを用いた物体との直接相互作用の測定における深層学習アルゴリズムを用いた物理パラメータ推定に関する十分な研究はない。
本研究では、剛性係数の回帰をトレーニング可能なシステムを提案し、物理シミュレータ環境を用いて広範な実験を行った。
本システムでは,Yale OpenHandソフトグリップを用いて,指に装着した慣性測定ユニット(IMU)の読み値に基づいて,物体の硬さを確実に推定することができる。
論文 参考訳(メタデータ) (2020-03-02T11:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。