論文の概要: AdaptiGraph: Material-Adaptive Graph-Based Neural Dynamics for Robotic Manipulation
- arxiv url: http://arxiv.org/abs/2407.07889v1
- Date: Wed, 10 Jul 2024 17:57:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 15:33:18.721837
- Title: AdaptiGraph: Material-Adaptive Graph-Based Neural Dynamics for Robotic Manipulation
- Title(参考訳): AdaptiGraph: ロボットマニピュレーションのための物質適応型グラフベースニューラルダイナミクス
- Authors: Kaifeng Zhang, Baoyu Li, Kris Hauser, Yunzhu Li,
- Abstract要約: 本稿では,学習に基づく動的モデリング手法であるAdaptiGraphを紹介する。
ロボットは様々な難易度の高い変形可能な素材を予測し、適応し、制御することができる。
実世界の変形可能な物体の多種多様な集合を含む予測・操作タスクについて,予測精度とタスク習熟度に優れることを示す。
- 参考スコア(独自算出の注目度): 30.367498271886866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive models are a crucial component of many robotic systems. Yet, constructing accurate predictive models for a variety of deformable objects, especially those with unknown physical properties, remains a significant challenge. This paper introduces AdaptiGraph, a learning-based dynamics modeling approach that enables robots to predict, adapt to, and control a wide array of challenging deformable materials with unknown physical properties. AdaptiGraph leverages the highly flexible graph-based neural dynamics (GBND) framework, which represents material bits as particles and employs a graph neural network (GNN) to predict particle motion. Its key innovation is a unified physical property-conditioned GBND model capable of predicting the motions of diverse materials with varying physical properties without retraining. Upon encountering new materials during online deployment, AdaptiGraph utilizes a physical property optimization process for a few-shot adaptation of the model, enhancing its fit to the observed interaction data. The adapted models can precisely simulate the dynamics and predict the motion of various deformable materials, such as ropes, granular media, rigid boxes, and cloth, while adapting to different physical properties, including stiffness, granular size, and center of pressure. On prediction and manipulation tasks involving a diverse set of real-world deformable objects, our method exhibits superior prediction accuracy and task proficiency over non-material-conditioned and non-adaptive models. The project page is available at https://robopil.github.io/adaptigraph/ .
- Abstract(参考訳): 予測モデルは、多くのロボットシステムにおいて重要な要素である。
しかし、様々な変形可能な物体、特に未知の物理的性質を持つ物体に対する正確な予測モデルの構築は、依然として重要な課題である。
本稿では,学習に基づく動的モデリング手法であるAdaptiGraphについて紹介する。
AdaptiGraphは、物質ビットを粒子として表現し、粒子の動きを予測するためにグラフニューラルネットワーク(GNN)を使用する、非常に柔軟なグラフベースのニューラルダイナミクス(GBND)フレームワークを利用している。
その重要な革新は、物理特性の異なる多種多様な物質の運動を再訓練せずに予測できる統一的な物理特性条件付きGBNDモデルである。
オンライン展開中に新しい材料に遭遇すると、AdaptiGraphは数ショットのモデル適応のために物理的プロパティ最適化プロセスを利用し、観測されたインタラクションデータに適合するようにした。
適応されたモデルは、剛性、粒度、圧力の中心など様々な物理的特性に適応しながら、動的を正確にシミュレートし、ロープ、粒状媒体、硬質箱、布などの様々な変形可能な材料の運動を予測することができる。
実世界の多種多様な変形可能な物体の予測と操作について,非物質条件および非適応モデルよりも優れた予測精度とタスク習熟度を示す。
プロジェクトページはhttps://robopil.github.io/adaptigraph/ で公開されている。
関連論文リスト
- Physics-Encoded Graph Neural Networks for Deformation Prediction under
Contact [87.69278096528156]
ロボット工学では、触覚相互作用における物体の変形を理解することが不可欠である。
本稿では,物理符号化グラフニューラルネットワーク(GNN)を用いた予測手法を提案する。
コードとデータセットを公開して、ロボットシミュレーションと把握の研究を進めました。
論文 参考訳(メタデータ) (2024-02-05T19:21:52Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
グラフニューラルネットワーク(GNN)は、物理力学を学習するための一般的なツールとなっている。
物理法則は、モデル一般化に必須な帰納バイアスである対称性に従属する。
本モデルは,RigidFall上でのPhysylonと2倍低ロールアウトMSEの8つのシナリオにおいて,平均3%以上の接触予測精度の向上を実現している。
論文 参考訳(メタデータ) (2022-10-13T10:00:30Z) - Calibrating constitutive models with full-field data via physics
informed neural networks [0.0]
実フィールド変位データに基づくモデルパラメータ化の発見のための物理インフォームド深層学習フレームワークを提案する。
我々は、ニューラルネットワークの予測に物理的な制約を課すために、強い形式ではなく、支配方程式の弱い形式で作業する。
我々は、インフォメーション機械学習が実現可能な技術であり、モデルのキャリブレーションにフルフィールド実験データをどのように利用するかというパラダイムを変える可能性があることを実証した。
論文 参考訳(メタデータ) (2022-03-30T18:07:44Z) - Learning to Simulate Unseen Physical Systems with Graph Neural Networks [13.202870928432045]
グラフベース物理エンジン(Graph-based Physics Engine)は,物理先行パラメータと物質パラメータを組み込んだ機械学習手法である。
我々は、GPEがトレーニングセットにない異なる特性を持つ材料に一般化できることを実証した。
さらに、モデルに運動量保存の法則を導入することにより、学習の効率性と安定性が大幅に向上する。
論文 参考訳(メタデータ) (2022-01-28T07:56:46Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
人間は、物体の物理的特性を直感的に認識し、複雑な相互作用に従事している場合でも、その動きを予測する。
我々は、物理を同時に推論し、視覚と力学の先行に基づく将来の予測を行うニューラルモデルを提案する。
実験により、我々のモデルはいくつかの観測範囲内で物理的特性を推測できることが示され、モデルが目に見えないシナリオに迅速に適応し、将来正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-04-28T17:06:38Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z) - A machine learning based plasticity model using proper orthogonal
decomposition [0.0]
データ駆動の物質モデルは、古典的な数値的アプローチよりも多くの利点がある。
データ駆動型マテリアルモデルを開発する1つのアプローチは、機械学習ツールを使用することである。
弾性と塑性の両面において,機械学習に基づく材料モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-01-07T15:46:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。