論文の概要: Deep learning-based auto-contouring of organs/structures-at-risk for pediatric upper abdominal radiotherapy
- arxiv url: http://arxiv.org/abs/2411.00594v1
- Date: Fri, 01 Nov 2024 13:54:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:49:39.118097
- Title: Deep learning-based auto-contouring of organs/structures-at-risk for pediatric upper abdominal radiotherapy
- Title(参考訳): 小児上腹部放射線治療における深層学習による臓器・構造・リスクの自動再構成
- Authors: Mianyong Ding, Matteo Maspero, Annemieke S Littooij, Martine van Grotel, Raquel Davila Fajardo, Max M van Noesel, Marry M van den Heuvel-Eibrink, Geert O Janssens,
- Abstract要約: 本研究の目的は, 小児上腹部腫瘍におけるOAR (delineating organs-at-risk) のCTによる多臓器分割モデルを構築することであった。
Dice similarity Coefficient (DSC) 95% Hausdorff Distance (HD95) および平均表面距離 (MSD) を用いて評価した。
Model-PMC-UMCUは9つのOARのうち、0.95以上であり、脾臓と心臓は0.90から0.95の範囲であった。
胃と膵のDSC値は0.90未満であった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Purposes: This study aimed to develop a computed tomography (CT)-based multi-organ segmentation model for delineating organs-at-risk (OARs) in pediatric upper abdominal tumors and evaluate its robustness across multiple datasets. Materials and methods: In-house postoperative CTs from pediatric patients with renal tumors and neuroblastoma (n=189) and a public dataset (n=189) with CTs covering thoracoabdominal regions were used. Seventeen OARs were delineated: nine by clinicians (Type 1) and eight using TotalSegmentator (Type 2). Auto-segmentation models were trained using in-house (ModelPMC-UMCU) and a combined dataset of public data (Model-Combined). Performance was assessed with Dice Similarity Coefficient (DSC), 95% Hausdorff Distance (HD95), and mean surface distance (MSD). Two clinicians rated clinical acceptability on a 5-point Likert scale across 15 patient contours. Model robustness was evaluated against sex, age, intravenous contrast, and tumor type. Results: Model-PMC-UMCU achieved mean DSC values above 0.95 for five of nine OARs, while spleen and heart ranged between 0.90 and 0.95. The stomach-bowel and pancreas exhibited DSC values below 0.90. Model-Combined demonstrated improved robustness across both datasets. Clinical evaluation revealed good usability, with both clinicians rating six of nine Type 1 OARs above four and six of eight Type 2 OARs above three. Significant performance 2 differences were only found across age groups in both datasets, specifically in the left lung and pancreas. The 0-2 age group showed the lowest performance. Conclusion: A multi-organ segmentation model was developed, showcasing enhanced robustness when trained on combined datasets. This model is suitable for various OARs and can be applied to multiple datasets in clinical settings.
- Abstract(参考訳): 目的: 本研究は, 小児上腹部腫瘍における臓器病変 (OAR) を規定するCTを用いた多臓器分画モデルを構築し, その堅牢性を評価することを目的とした。
材料と方法: 小児腎腫瘍および神経芽腫(n=189), 胸腹部領域をCTで観察したパブリックデータセット(n=189) の術中CTを用いて検討した。
臨床医9名(タイプ1)とTotalSegmentator8名(タイプ2)。
自動セグメンテーションモデルは、社内(ModelPMC-UMCU)と公開データのデータセット(Model-Combined)を組み合わせてトレーニングされた。
Dice similarity Coefficient (DSC), 95% Hausdorff Distance (HD95), 平均表面距離 (MSD) で評価した。
2人の臨床医が15症例の輪郭に5点のLikert尺度で臨床受容性を評価した。
性,年齢,静脈内コントラスト,腫瘍型に対してモデルロバストネスを評価した。
結果: モデルPMC-UMCUは9つのOARのうち5つのうち0.95以上であり, 脾臓と心臓は0.90から0.95の範囲であった。
胃と膵のDSC値は0.90未満であった。
Model-Combinedは、両方のデータセット間で堅牢性を改善した。
臨床評価では, 2例とも, 3例より9例, 3例より6例, 3例より6例, 3例より6例であった。
有意なパフォーマンス2の差は, 両データセット, 特に左肺と膵の年齢群でみられた。
0~2歳群は低成績であった。
結論: 複数組織セグメンテーションモデルが開発され, 組み合わせたデータセットでトレーニングした際の堅牢性の向上が示された。
このモデルは様々なOARに適しており、臨床環境では複数のデータセットに適用できる。
関連論文リスト
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Quantifying uncertainty in lung cancer segmentation with foundation models applied to mixed-domain datasets [6.712251433139412]
医用画像基盤モデルは、極小調整で臓器や腫瘍を分割する能力を示している。
これらのモデルは通常、タスク固有の分散(ID)データセットで評価される。
我々は、自己教師付き学習(SSL)で訓練された複数の基礎モデルの性能を評価するために、計算的に高速なメトリクスの包括的セットを導入した。
SMITは高いF1スコア(LRAD: 0.60, 5Rater: 0.64)と低いエントロピー(LRAD: 0.06, 5Rater: 0.12)を生成し、腫瘍検出率と確実なセグメンテーションを示した。
論文 参考訳(メタデータ) (2024-03-19T19:36:48Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - A Generalizable Artificial Intelligence Model for COVID-19
Classification Task Using Chest X-ray Radiographs: Evaluated Over Four
Clinical Datasets with 15,097 Patients [6.209420804714487]
トレーニングされたモデルの一般化性は、4つの異なる実世界の臨床データセットを用いて遡及的に評価された。
単一ソースの臨床データセットを使用してトレーニングされたAIモデルは、内部時間テストセットに適用すると、AUCが0.82に達した。
医療画像・データ資源センターが収集した多施設のCOVID-19データセットに適用すると、AUCは0.79に達した。
論文 参考訳(メタデータ) (2022-10-04T04:12:13Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - Translating automated brain tumour phenotyping to clinical neuroimaging [0.4199844472131921]
我々は、自動腫瘍分割モデルの比較忠実度を定量化するために最先端の手法を用いる。
深層学習セグメンテーションモデルは、データ不足時に腫瘍をうまく特徴づけ、コントラストを使わずに拡張組織を検出できる。
論文 参考訳(メタデータ) (2022-06-13T12:58:54Z) - Multi-institutional Validation of Two-Streamed Deep Learning Method for
Automated Delineation of Esophageal Gross Tumor Volume using planning-CT and
FDG-PETCT [14.312659667401302]
食道悪性腫瘍容積(GTV)コントゥーリングの現況は,高作業コストとユーザ間の変動を手作業で記述することに依存している。
1施設で開発された深層学習(DL)多モード食道GTVコンチューリングモデルの臨床的応用性を検証する。
論文 参考訳(メタデータ) (2021-10-11T13:56:09Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - Chest x-ray automated triage: a semiologic approach designed for
clinical implementation, exploiting different types of labels through a
combination of four Deep Learning architectures [83.48996461770017]
本研究では,異なる畳み込みアーキテクチャの後期融合に基づく深層学習手法を提案する。
公開胸部x線画像と機関アーカイブを組み合わせたトレーニングデータセットを4つ構築した。
4つの異なるディープラーニングアーキテクチャをトレーニングし、それらのアウトプットとレイトフュージョン戦略を組み合わせることで、統一されたツールを得ました。
論文 参考訳(メタデータ) (2020-12-23T14:38:35Z) - iPhantom: a framework for automated creation of individualized
computational phantoms and its application to CT organ dosimetry [58.943644554192936]
本研究の目的は、患者固有の幻覚やデジタル双眼鏡の自動作成のための新しいフレームワーク、iPhantomを開発し、検証することである。
この枠組みは、個々の患者のCT画像における放射線感受性臓器への放射線線量を評価するために応用される。
iPhantomは、アンカーオルガンのDice similarity Coefficients (DSC) >0.6の精度で全ての臓器の位置を正確に予測し、他のオルガンのDSCは0.3-0.9である。
論文 参考訳(メタデータ) (2020-08-20T01:50:49Z) - Deep Learning to Quantify Pulmonary Edema in Chest Radiographs [7.121765928263759]
肺浮腫の重症度を胸部X線写真で分類する機械学習モデルを開発した。
深層学習モデルは、大きな胸部X線写真データセットで訓練された。
論文 参考訳(メタデータ) (2020-08-13T15:45:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。