論文の概要: pcaGAN: Improving Posterior-Sampling cGANs via Principal Component Regularization
- arxiv url: http://arxiv.org/abs/2411.00605v1
- Date: Fri, 01 Nov 2024 14:09:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:48:48.119423
- Title: pcaGAN: Improving Posterior-Sampling cGANs via Principal Component Regularization
- Title(参考訳): pcaGAN:主成分規則化による後部サンプリングcGANの改善
- Authors: Matthew C. Bendel, Rizwan Ahmad, Philip Schniter,
- Abstract要約: 画像逆問題では、観測された測定値と真の画像の事前知識の両方に適合する仮説が多数存在する。
本稿では, 高速かつ高精度な後サンプリング条件生成対向ネットワーク (cGAN) を提案する。
- 参考スコア(独自算出の注目度): 11.393603788068777
- License:
- Abstract: In ill-posed imaging inverse problems, there can exist many hypotheses that fit both the observed measurements and prior knowledge of the true image. Rather than returning just one hypothesis of that image, posterior samplers aim to explore the full solution space by generating many probable hypotheses, which can later be used to quantify uncertainty or construct recoveries that appropriately navigate the perception/distortion trade-off. In this work, we propose a fast and accurate posterior-sampling conditional generative adversarial network (cGAN) that, through a novel form of regularization, aims for correctness in the posterior mean as well as the trace and K principal components of the posterior covariance matrix. Numerical experiments demonstrate that our method outperforms contemporary cGANs and diffusion models in imaging inverse problems like denoising, large-scale inpainting, and accelerated MRI recovery. The code for our model can be found here: https://github.com/matt-bendel/pcaGAN.
- Abstract(参考訳): 画像逆問題では、観測された測定値と真の画像の事前知識の両方に適合する仮説が多数存在する。
その画像の1つの仮説を返すのではなく、後続のサンプルは、多くの確率仮説を生成して完全な解空間を探索することを目的としており、これは後に不確実性を定量化したり、知覚/歪んだトレードオフを適切にナビゲートする回復を構築するために使われる。
本研究では, 後部共分散行列のトレースおよびK成分と同様に, 後部平均の正しさを目標とする, 高速かつ正確な後部サンプル条件生成対向ネットワーク(cGAN)を提案する。
数値実験により, 現代のcGANと拡散モデルより, ノイズ発生, 大規模塗布, MRI回復の高速化といった逆問題に優れることが示された。
私たちのモデルのコードは以下の通りです。
関連論文リスト
- Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Inlicit Neural representation (INR) は、逆問題を解決するための強力なパラダイムとして登場した。
提案するフレームワークは、他の医療画像タスクにおける逆問題を解決するための一般化可能なフレームワークである。
論文 参考訳(メタデータ) (2024-07-03T01:37:56Z) - Unsupervised Anomaly Detection via Masked Diffusion Posterior Sampling [8.887775968482208]
拡散モデルは、その強力な生成能力のために、異常検出に有望な応用を示している。
本稿では,Masked Diffusion Posterior Smpling (MDPS) という,新規かつ高解釈可能な手法を提案する。
MDPSは、異常検出や局所化と同様に、通常の画像再構成の品質において最先端の性能を達成することができる。
論文 参考訳(メタデータ) (2024-04-27T13:13:27Z) - Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Smpling (A-DPS) は、ある種類の腐敗に対して事前訓練された生成モデルである。
A-DPSは、いくつかの画像復元タスクにおいて、クリーンなデータで訓練されたモデルよりも、速度と性能の両方で優れていることが示される。
我々はAmbient Diffusionフレームワークを拡張して、FourierサブサンプルのマルチコイルMRI測定にのみアクセスしてMRIモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-03-13T17:28:20Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Posterior samples of source galaxies in strong gravitational lenses with
score-based priors [107.52670032376555]
我々はスコアベースモデルを用いて、背景銀河の歪みのない画像の事前推定を符号化する。
アウト・オブ・ディストリビューション・データを用いた実験において、可能性と事前のバランスが、我々の期待にどのように合致しているかを示す。
論文 参考訳(メタデータ) (2022-11-07T19:00:42Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - A Regularized Conditional GAN for Posterior Sampling in Image Recovery
Problems [11.393603788068777]
画像回復問題では、画像が歪んだり、不完全であったり、あるいはノイズによる破損した測定結果から推測しようとする。
本稿では,1秒間に数十個の高品質な後続サンプルを生成する正規化条件付きWasserstein GANを提案する。
本手法は, マルチコイルMRIと大規模インペインティングアプリケーションの両方において, 最先端の後方試料を作製する。
論文 参考訳(メタデータ) (2022-10-24T16:43:00Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
我々は,現在の解法がデータ多様体からサンプルパスを逸脱し,エラーが蓄積することを示す。
この問題に対処するため、多様体の制約に着想を得た追加の補正項を提案する。
本手法は理論上も経験上も従来の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-02T09:06:10Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Unsupervised Lesion Detection via Image Restoration with a Normative
Prior [6.495883501989547]
本稿では,ネットワークをベースとした事前分布を規範分布とし,MAP推定を用いて画素単位で病変を検出する確率モデルを提案する。
脳MRIにおけるグリオーマと脳卒中病変の実験は、提案手法が最先端の教師なし手法よりかなり優れていることを示している。
論文 参考訳(メタデータ) (2020-04-30T18:03:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。